The ACT-America project is a NASA Earth Venture Suborbital-2 mission designed to study the transport and fluxes of greenhouse gases. The open and freely available ACT-America data sets provide airborne in situ measurements of atmospheric carbon dioxide, methane, trace gases, aerosols, clouds, and meteorological properties, airborne remote sensing measurements of aerosol backscatter, atmospheric boundary layer height and columnar content of atmospheric carbon dioxide, tower-based measurements, and modeled atmospheric mole fractions and regional carbon fluxes of greenhouse gases over the Central and Eastern United States. We conducted 121 research flights during five campaigns in four seasons during 2016-2019 over three regions of the US (Mid-Atlantic, Midwest and South) using two NASA research aircraft (B-200 and C-130).
View Article and Find Full Text PDFThis study evaluates the capability of atmospheric CO column measurements under cloudy conditions using an airborne intensity-modulated continuous-wave integrated-path-differential-absorption lidar operating in the 1.57-μm CO absorption band. The atmospheric CO column amounts from the aircraft to the tops of optically thick cumulus clouds and to the surface in the presence of optically thin clouds are retrieved from lidar data obtained during the summer 2011 and spring 2013 flight campaigns, respectively.
View Article and Find Full Text PDFThe focus of this study is to model and validate the performance of intensity-modulated continuous-wave (IM-CW) CO(2) laser absorption spectrometer (LAS) systems and their CO(2) column measurements from airborne and satellite platforms. The model accounts for all fundamental physics of the instruments and their related CO(2) measurement environments, and the modeling results are presented statistically from simulation ensembles that include noise sources and uncertainties related to the LAS instruments and the measurement environments. The characteristics of simulated LAS systems are based on existing technologies and their implementation in existing systems.
View Article and Find Full Text PDFWe report on airborne CO(2) column absorption measurements made in 2009 with a pulsed direct-detection lidar operating at 1572.33 nm and utilizing the integrated path differential absorption technique. We demonstrated these at different altitudes from an aircraft in July and August in flights over four locations in the central and eastern United States.
View Article and Find Full Text PDFThe 2007 National Research Council (NRC) Decadal Survey on Earth Science and Applications from Space recommended Active Sensing of CO(2) Emissions over Nights, Days, and Seasons (ASCENDS) as a midterm, Tier II, NASA space mission. ITT Exelis, formerly ITT Corp., and NASA Langley Research Center have been working together since 2004 to develop and demonstrate a prototype laser absorption spectrometer for making high-precision, column CO(2) mixing ratio measurements needed for the ASCENDS mission.
View Article and Find Full Text PDFWe report airborne measurements of CO(2) column abundance conducted during two 2009 campaigns using a 2.05 μm laser absorption spectrometer. The two flight campaigns took place in the California Mojave desert and in Oklahoma.
View Article and Find Full Text PDFJ Mol Spectrosc
September 1997
The linestrengths for 40 absorption lines of H216O water vapor that were located between 813 and 820 nm were measured; most of these lines were selected for their potential usefulness in laser remote measurements of atmospheric humidity using the differential absorption lidar technique. The air-induced pressure-broadening coefficients were also measured for 32 of these lines and the air-induced pressure shift coefficients were measured for 29 lines. These spectroscopic parameters were derived from spectra obtained with an AlGaAs diode laser and two long-path absorption cells.
View Article and Find Full Text PDFA narrow-linewidth pulsed alexandrite laser has been greatly modified for improved spectral stability in an aircraft environment, and its operation has been evaluated in the laboratory for making water-vapor differential absorption lidar measurements. An alignment technique is described to achieve the optimum free spectral range ratio for the two étalons inserted in the alexandrite laser cavity, and the sensitivity of this ratio is analyzed. This technique drastically decreases the occurrence of mode hopping, which is commonly observed in a tunable, two-intracavity-étalon laser system.
View Article and Find Full Text PDFAn airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H(2)O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and > 99.85% spectral purity was used as the on-line transmitter.
View Article and Find Full Text PDFStratospheric ozone and aerosol distributions were measured across the wintertime Arctic vortex from January to March 1992 with an airborne lidar system as part of the 1992 Airborne Arctic Stratospheric Expedition (AASE II). Aerosols from the Mount Pinatubo eruption were found outside and inside the vortex with distinctly different distributions that clearly identified the dynamics of the vortex. Changes in aerosols inside the vortex indicated advection of air from outside to inside the vortex below 16 kilometers.
View Article and Find Full Text PDFOn 19 January 1992, heterogeneous loss of HNO(3), ClNO(3), and HCl was observed in part of the Mount Pinatubo volcanic cloud that had cooled as a result of forced ascent. Portions of the volcanic cloud froze near 191 kelvin. The reaction probability of ClNO(3) and the solubility of HNO(3) were close to laboratory measurements on liquid sulfuric acid.
View Article and Find Full Text PDFThe differential absorption lidar (DIAL) measurement of tropospheric ozone requires use of high average power ultraviolet lasers operating at two appropriate DIAL wavelengths. Laboratory experiments have demonstrated that a KrF excimer laser can be used to generate several wavelengths with good energy conversion efficiencies by stimulated Raman shifting using hydrogen (H2) and deuterium (D(2)). Computer simulations for an airborne lidar have shown that these laser emissions can be used for the pecise (less than 5% random error) high resolution (200-m vertical, 3-km horizontal) measurement of ozone across the troposphere using the DIAL technique.
View Article and Find Full Text PDFRecently measured properties of water vapor (H(2)O) absorption lines have been used in calculations to evaluate the temperature sensitivity of differential absorption lidar (DIAL) H(2)O measurements. This paper estimates the temperature sensitivity of H(2)O lines in the 717-733-nm region for both H(2)O mixing ratio and number density measurements, and discusses the influence of the H(2)O line ground state energies E'', the H(2)O absorption linewidths, the linewidth temperature dependence parameter, and the atmospheric temperature and pressure variations with altitude and location on the temperature sensitivity calculations. Line parameters and temperature sensitivity calculations for sixty-seven H(2)O lines in the 720-nm band are given which can be directly used in field experiments.
View Article and Find Full Text PDFThis paper presents an evaluation of the random and systematic error sources associated with differential absorption lidar (DIAL) measurements of tropospheric water vapor (H(2)O) profiles from airborne and spaceborne platforms. The results of this analysis are used in the development and performance evaluation of the Lidar Atmospheric Sensing Experiment (LASE) H(2)O DIAL system presently under development at the NASA Langley Research Center for operation on a high altitude ER-2 (advanced U-2) aircraft. The analysis shows that a <10% H(2)O profile measurement accuracy is possible for the LASE system with a vertical and horizontal resolution of 200 m and 10 km, respectively, at night and 300 m and 20 km during the day.
View Article and Find Full Text PDFThe present study demonstrates the potential of a multiple wavelength lidar for discriminating between several aerosol types such as maritime, continental, stratospheric, and desert aerosols on the basis of wavelength dependence of the aerosol backscatter coefficient. In the analysis of lidar signals, the two-component lidar equation was solved under the assumption of similarity in the derived profiles of backscatter coefficients for each wavelength, and this made it possible to reduce the uncertainty in the extinction/backscatter ratio, which is a key parameter in the lidar solution. It is shown that a three-wavelength lidar system operating at 300, 600, and 1064 nm can provide unique information for discriminating between various aerosol types such as continental, maritime, Saharan dust, stratospheric aerosols in a tropopause fold event, and tropical forest aerosols.
View Article and Find Full Text PDFFor improved DIAL measurements of water vapor in the upper troposphere or lower stratosphere, we have generated narrowband (~0.03-cm(-1)) laser radiation at 720- and 940-nm wavelengths by stimulated Raman scattering (SRS) using the narrow linewidth (~0.02-cm(-1)) output of a Nd:YAG-pumped dye laser.
View Article and Find Full Text PDFInjection control of a tunable Ti:sapphire laser using a narrow-bandwidth pulsed dye laser operating at a wavelength removed from the peak of the Ti:sapphire-laser gain curve is reported. The free-running Ti:sapphire laser had broadband laser emission from 750 to 790 nm. Injection at 727 nm resulted in essentially complete energy extraction at that wavelength in a 2.
View Article and Find Full Text PDFThe differential absorption lidar (DIAL) technique generally assumes that atmospheric optical scattering is the same at the two laser wavelengths used in the DIAL measurement of a gas concentration profile. Errors can arise in this approach when the wavelengths are significantly separated, and there is a range dependence in the aerosol scattering distribution. This paper discusses the errors introduced by large DIAL wavelength separations and spatial inhomogeneity of aerosols in the atmosphere.
View Article and Find Full Text PDFAn airborne differential absorption lidar (DIAL) system has been developed for the remote measurement of gas and aerosol profiles in the troposphere and lower stratosphere. The multipurpose DIAL system can operate from 280 to 1064 nm for measurements of ozone, sulfur dioxide, nitrogen dioxide, water vapor, temperature,pressure, and aerosol backscattering. The laser transmitter consists of two narrow linewidth Nd: YAG pumped dye lasers with automatic wavelength control.
View Article and Find Full Text PDFShuttle lidar measurements of magnesium-ion (Mg+) number density in the ionosphere (80-500 km) have been numerically simulated. A set of recently defined system parameters are used to assess the system performance. These simulations take into account the saturation effect of atomic absorption due to the high intensity of the laser, which is seen to be important in making near-field or daytime measurements.
View Article and Find Full Text PDFA Shuttle lidar technique based on the detection of backscattered resonance fluorescence radiation has been numerically modeled and applied to the measurements of sodium (Na) and potassium (K) number density in the upper atmosphere (80-110 km). The simulations use recently defined lidar system parameters and take into account the effect of saturation of atomic absorption due to the high intensity of laser pulses. Such an effect is shown to be important in daytime measurements, when there is a need to narrow the laser beam divergence in order to reduce the background light.
View Article and Find Full Text PDFA ground-based differential absorption lidar (DIAL) system is described which has been developed for vertical range-resolved measurements of water vapor. The laser transmitter consists of a ruby-pumped dye laser, which is operated on a water vapor absorption line at 724.372 nm.
View Article and Find Full Text PDF