Publications by authors named "Broussard S"

COVID-19 places unprecedented demands on the oncology ecosystem. The extensive pressure of managing health care during the pandemic establishes the need for rapid implementation of telemedicine. Across our large statewide practice of 640 practitioners at 221 sites of service, an aggressive multidisciplinary telemedicine strategy was implemented in March by coordinating and training many different parts of our healthcare delivery system.

View Article and Find Full Text PDF

The current study investigated how amplitude and phase information differentially contribute to speech intelligibility. Listeners performed a word-identification task after hearing spectrally degraded sentences. Each stimulus was degraded by first dividing it into segments, then the amplitude and phase components of each segment were decorrelated independently to various degrees relative to those of the original segment.

View Article and Find Full Text PDF

The anti-inflammatory cytokine interleukin (IL)-10 is important for regulating inflammation in the periphery and brain, but whether it protects against infection- or age-related psychomotor disturbances and fatigue is unknown. Therefore, the present study evaluated motor coordination, time to fatigue, and several central and peripheral proinflammatory cytokines in male young adult (3-mo-old) and middle-aged (12-mo-old) wild-type (IL-10(+/+)) and IL-10-deficient (IL-10(-/-)) mice after intraperitoneal injection of lipopolysaccharide (LPS) or saline. No age-related differences were observed; therefore, data from the two ages were pooled and analyzed to determine effects of genotype and treatment.

View Article and Find Full Text PDF

Insulin-like growth factor (IGF)-I and brain-derived neurotrophic factor (BDNF) act within the brain to enhance neuronal survival and plasticity. We extend these findings by showing that the presence of both neurotrophins is required to depress the rise in intracellular Ca2+ caused by glutamate in primary cultures of cerebrocortical neurons. IGF-I enhanced expression of BDNF receptors (Trk-B) and increased the ability of BDNF to induce ERK1/2 phosphorylation.

View Article and Find Full Text PDF

The stress kinase c-jun N-terminal kinase (JNK) was recently shown to be involved in the pathophysiology of major inflammatory conditions, including Alzheimer's disease, stroke, obesity, and type II diabetes. However, the role of JNK in regulating inflammatory events in skeletal muscle is only beginning to be explored. IGF-I is the major hormone that promotes muscle growth and development.

View Article and Find Full Text PDF

Metabolic and cognitive alterations occur during hyperammonemia. Here, we report that chronic hyperammonemia also leads to increased sensitivity to LPS. Sparse-fur mice were challenged i.

View Article and Find Full Text PDF

Purpose: This study explored patients' perceptions of barriers to diabetes education among a mostly African American population of adults with diabetes.

Methods: A survey was conducted among 605 new patients attending an urban outpatient diabetes clinic. The questionnaire gathered information on issues patients believed would adversely affect their ability to learn about diabetes.

View Article and Find Full Text PDF

GH and IGF-I control over 80% of postnatal growth. We recently established that TNFalpha impairs the ability of IGF-I to increase protein synthesis and promote expression of myogenin in myoblasts. Here we extend these results by showing that ceramide, a second messenger in both TNFalpha and IL-1beta receptor signaling pathways, is a key downstream sphingosine-based lipid that leads to IGF-I resistance.

View Article and Find Full Text PDF

Proinflammatory cytokines are elevated in disorders characterized by muscle wasting and weakness, such as inflammatory myopathies and AIDS wasting. We recently demonstrated that TNF-alpha impairs the ability of insulin-like growth factor (IGF)-I to promote protein synthesis in muscle precursor cells. In this study we extend these findings by showing that low concentrations of IL-1beta impair IGF-I-dependent differentiation of myoblasts, as assessed by expression of the muscle specific protein, myosin heavy chain.

View Article and Find Full Text PDF

Cell cycle aberrations occurring at the G(1)/S checkpoint often lead to uncontrolled cell proliferation and tumor growth. We recently demonstrated that IL-1beta inhibits insulin-like growth factor (IGF)-I-induced cell proliferation by preventing cells from entering the S phase of the cell cycle, leading to G(0)/G(1) arrest. Notably, IL-1beta suppresses the ability of the IGF-I receptor tyrosine kinase to phosphorylate its major docking protein, insulin receptor substrate-1, in MCF-7 breast carcinoma cells.

View Article and Find Full Text PDF

Proinflammatory cytokines, such as TNFalpha and IL-1beta, are both cytostatic and cytotoxic. In contrast, IGF-I promotes proliferation and survival of hematopoietic progenitor cells. In this report, we establish that both the cytostatic and cytotoxic activity of TNFalpha on murine myeloid progenitor cells is only evident in the presence of IGF-I.

View Article and Find Full Text PDF

Cyclin A is required for cell cycle S phase entry, and its overexpression contributes to tumorigenesis. Release of pre-existing E2Fs from inactive complexes of E2F and hypophosphorylated retinoblastoma (RB) is the prevailing dogma for E2F transcriptional activation of target genes such as cyclin A. Here we explored the hypothesis that new synthesis of E2F-1 is required for insulin-like growth factor-I (IGF-I) to induce cyclin A accumulation and RB hyperphosphorylation, events that are targeted by tumor necrosis factor alpha (TNFalpha) to arrest cell cycle progression.

View Article and Find Full Text PDF

TNFalpha is elevated following damage to skeletal muscle. Here we provide evidence that TNFalpha acts on muscle cells to induce a state of IGF-I receptor resistance. We establish that TNFalpha inhibits IGF-I-stimulated protein synthesis in primary porcine myoblasts.

View Article and Find Full Text PDF

The behavioral repertoire of humans and animals changes dramatically following infection. Sick individuals have little motivation to eat, are listless, complain of fatigue and malaise, loose interest in social activities and have significant changes in sleep patterns. They display an inability to experience pleasure, have exaggerated responses to pain and fail to concentrate.

View Article and Find Full Text PDF

Hormones, such as insulin-like growth factor-I (IGF-I), and cytokines, like IL-3 and IL-4, promote survival of progenitor myeloid cells. Here we demonstrate that IGF-I, IL-3 and IL-4 all significantly block activation of caspase-3 in promyeloid cells following growth factor deprivation. However, only IL-3 and IGF-I increase enzymatic activity and phosphorylation of the survival-promoting kinase Akt.

View Article and Find Full Text PDF

Neutralization of endogenous growth factors and administration of exogenous bioactive cytokines are two distinct biological antitumor strategies that show promise for treatment of cancer patients. In this report, we provide evidence to link both strategies as an integrative approach to cancer therapy. We tested the hypothesis that proinflammatory cytokines block growth of transformed cells by inhibiting key intracellular signaling events after activation of the insulin-like growth factor-I (IGF-I) tyrosine kinase receptor.

View Article and Find Full Text PDF

Interleukin (IL)-10 is synthesized in the central nervous system (CNS) and acts to limit clinical symptoms of stroke, multiple sclerosis, Alzheimer's disease, meningitis, and the behavioral changes that occur during bacterial infections. Expression of IL-10 is elevated during the course of most major diseases in the CNS and promotes survival of neurons and all glial cells in the brain by blocking the effects of proapoptotic cytokines and by promoting expression of cell survival signals. Stimulation of IL-10 receptors regulates numerous life- or death-signaling pathways--including Jak1/Stat3, PI 3-kinase, MAPK, SOCS, and NF-kappaB--ultimately promoting cell survival by inhibiting both ligand- and mitochondrial-induced apoptotic pathways.

View Article and Find Full Text PDF

Deterioration of the thymus gland during aging is accompanied by a reduction in plasma GH. Here we report gross and microscopic results from 24-month-old Wistar-Furth rats treated with rat GH derived from syngeneic GH3 cells or with recombinant human GH. Histological evaluation of aged rats treated with either rat or human GH displayed clear morphologic evidence of thymic regeneration, reconstitution of hematopoietic cells in the bone marrow, and multiorgan extramedullary hematopoiesis.

View Article and Find Full Text PDF

IL-10 is an anti-inflammatory cytokine that has recently been shown to promote survival of neurons and glia. Here we establish that IL-10 induces phosphorylation of Stat3 on Tyr(705) and serves as a survival factor for N13 microglial cells. Recombinant IL-10 (10 ng/ml) decreases growth factor withdrawal-induced apoptosis by 50%, as assessed by TUNEL.

View Article and Find Full Text PDF

IL-10 is well known to be a potent inhibitor of the synthesis of proinflammatory cytokines, but noninflammatory hemopoietic cells also express IL-10Rs. Here we show that IL-10 directly affects progenitor myeloid cells by protecting them from death following the removal of growth factors. Murine factor-dependent cell progenitors cultured in the absence of growth factors were 43 +/- 1% apoptotic after 12 h.

View Article and Find Full Text PDF

The cytokine tumor necrosis factor(alpha) (TNFalpha) and the hormone insulin-like growth factor-I (IGF-I) have both been shown to regulate inflammatory events in the central nervous system (CNS). This review summarizes the seemingly independent roles of TNFalpha and IGF-I in promoting and inhibiting neurodegenerative diseases. We then offer evidence that the combined effects of IGF-I and TNFalpha on neuronal survival can be vastly different when both receptors are stimulated simultaneously, as is likely to occur in vivo.

View Article and Find Full Text PDF

We report the molecular characterization of a novel G-protein-coupled receptor, GPR48, that resembles proteins in the glycoprotein hormone receptor family. The full-length human GPR48 cDNA is comprised of 951 amino acids. The large extracellular amino terminus of 538 residues is composed of seventeen leucine-rich repeats (LRR).

View Article and Find Full Text PDF