CAR-T cells are T cells expressing a chimeric antigen receptor (CAR) rendering them capable of killing tumor cells after recognition of a target antigen. CD19 CAR-T cells have revolutionized the treatment of hematological malignancies. Their function is typically assessed by cytotoxicity assays using human allogeneic cell lines expressing the target antigen CD19 such as Nalm-6.
View Article and Find Full Text PDFBackground: In the era of personalized medicine, the establishment of preclinical models of cancer that faithfully recapitulate original tumors is essential to potentially guide clinical decisions.
Methods: We established 7 models [4 cell lines, 2 Patient-Derived Tumor Organoids (PDTO) and 1 Patient-Derived Xenograft (PDX)], all derived from the same Ovarian Clear Cell Carcinoma (OCCC). To determine the relevance of each of these models, comprehensive characterization was performed based on morphological, histological, and transcriptomic analyses as well as on the evaluation of their response to the treatments received by the patient.
Chondrosarcomas and osteosarcomas are malignant bone tumors with a poor prognosis when unresectable or metastasized. Moreover, radiotherapy and chemotherapy could be ineffective. MiRNAs represent an alternative therapeutic approach.
View Article and Find Full Text PDFAir pollutants include many compounds among them oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs). As they are suspected to generate DNA damage and mutagenicity, an understanding of their mode of action could highlight a carcinogenic potential risk in exposed population. In this article, a prospective study on seven oxy-PAHs selected in terms of occurrence in the environment was conducted on mutagenicity, genotoxicity, and cytotoxicity potentials using in vitro assays including Ames test on five strains, kinetic analysis of cytotoxicity and apoptosis, phosphorylation of histone H2AX, and p53 induction assays on human lung cell line BEAS-2B.
View Article and Find Full Text PDFThe identification of miRNAs' targets and associated regulatory networks might allow the definition of new strategies using drugs whose association mimics a given miRNA's effects. Based on this assumption we devised a multi-omics approach to precisely characterize miRNAs' effects. We combined miR-491-5p target affinity purification, RNA microarray, and mass spectrometry to perform an integrated analysis in ovarian cancer cell lines.
View Article and Find Full Text PDFBesides the direct effects of radiations, indirect effects are observed within the surrounding non-irradiated area; irradiated cells relay stress signals in this close proximity, inducing the so-called radiation-induced bystander effect. These signals received by neighboring unirradiated cells induce specific responses similar with those of direct irradiated cells. To understand the cellular response of bystander cells, we performed a 2D gel-based proteomic study of the chondrocytes receiving the conditioned medium of low-dose irradiated chondrosarcoma cells.
View Article and Find Full Text PDFChondrosarcomas are malignant bone tumors. Their abundant cartilage-like extracellular matrix and their hypoxic microenvironment contribute to their resistance to chemotherapy and radiotherapy, and no effective therapy is currently available. MicroRNAs (miRNAs) may be an interesting alternative in the development of therapeutic options.
View Article and Find Full Text PDFInt J Pharm
September 2020
Background: Pyridoclax is an original lead, recently identified as very promising in treatment of chemoresistant ovarian cancers. To correct the unfavorable intrinsic physico-chemical properties of this BCS II drug, a formulation strategy was implied in the drug discovery step. Pyridoclax-loaded nanoemulsions (NEs) were developed to permit its preclinical evaluation.
View Article and Find Full Text PDFOvarian cancer represents the first cause of mortality from gynecologic malignancies due to frequent chemoresistance occurrence. Increasing the [BH3-only Bim, Puma, Noxa proapoptotic]/[Bcl-x, Mcl-1 antiapoptotic] proteins ratio was proven to efficiently kill ovarian carcinoma cells and development of new molecules to imbalance Bcl-2 member equilibrium are strongly required. Drug repurposing constitutes an innovative approach to rapidly develop therapeutic strategies through exploitation of established drugs already approved for the treatment of noncancerous diseases.
View Article and Find Full Text PDFNovel therapeutic strategies are urgently required for the clinical management of chemoresistant ovarian carcinoma, which is the most lethal of the gynecologic malignancies. miRNAs hold promise because they play a critical role in determining the cell phenotype by regulating several hundreds of targets, which could constitute vulnerabilities of cancer cells. A combination of gain-of-function miRNA screening and real-time continuous cell monitoring allows the identification of miRNAs with robust cytotoxic effects in chemoresistant ovarian cancer cells.
View Article and Find Full Text PDFWhile the dose-response relationship of radiation-induced bystander effect (RIBE) is controversial at low and high linear energy transfer (LET), mechanisms and effectors of cell-to-cell communication stay unclear and highly dependent of cell type. In the present study, we investigated the capacity of chondrocytes in responding to bystander factors released by chondrosarcoma cells irradiated at different doses (0.05 to 8 Gy) with X-rays and C-ions.
View Article and Find Full Text PDFProtein-protein interactions are attractive targets because they control numerous cellular processes. In oncology, apoptosis regulating Bcl-2 family proteins are of particular interest. Apoptotic cell death is controlled via PPIs between the anti-apoptotic proteins hydrophobic groove and the pro-apoptotic proteins BH3 domain.
View Article and Find Full Text PDFIn this study, we investigated the anticancer efficacy of pegylated liposomes containing 6BrCaQ, an hsp90 inhibitor derived from novobiocin. 6BrCaQ has been previously identified as the most potent compound in a series of quinoleic novobiocin analogs but is poorly water-soluble. We investigated, for the first time, the anti-proliferative effects of this drug in vivo in an orthotopic breast cancer model (MDA-MB-231 luc) using pegylated liposomes to allow its administration.
View Article and Find Full Text PDFOvarian cancer is the leading cause of death from gynecological malignancies worldwide, and innate or acquired chemoresistance of ovarian cancer cells is the major cause of therapeutic failure. It has been demonstrated that the concomitant inhibition of Bcl-xL and Mcl-1 anti-apoptotic activities is able to trigger apoptosis in chemoresistant ovarian cancer cells. In this context, siRNA-mediated Bcl‑xL and Mcl-1 inhibition constitutes an appealing strategy by which to eliminate chemoresistant cancer cells.
View Article and Find Full Text PDFOur knowledge and control of the pathogenesis induced by the filariae remain limited due to experimental obstacles presented by parasitic nematode biology and the lack of selective prophylactic or curative drugs. Here we thought to investigate the role of neutrophils in the host innate immune response to the infection caused by the Litomosoides sigmodontis murine model of human filariasis using mice harboring a gain-of-function mutation of the chemokine receptor CXCR4 and characterized by a profound blood neutropenia (Cxcr4(+/1013)). We provided manifold evidence emphasizing the major role of neutrophils in the control of the early stages of infection occurring in the skin.
View Article and Find Full Text PDFAs with miRNAs a decade ago, the scientific community recently understood that lncRNAs represent a new layer of complexity in the regulation of gene expression. Although only a subset of lncRNAs has been functionally characterized, it is clear that they are deeply involved in the most critical physiological and pathological biological processes. This review shows that in ovarian carcinoma, data already available testify to the importance of lncRNAs and that the demonstration of an ever-growing role of lncRNAs in the biology of this malignancy can be expected from future studies.
View Article and Find Full Text PDFOvarian carcinoma is the leading cause of death from gynecologic cancer in the developed world and is characterized by acquired chemoresistance leading to an overall 5-year survival rate of about 30 %. We previously showed that Bcl-xL and Mcl-1 cooperatively protect platinum-resistant ovarian cancer cells from apoptosis. Despite BH3-mimetics represent promising drugs to target Bcl-xL, anti-Mcl-1 strategies are still in pre-clinical studies and required new investigations.
View Article and Find Full Text PDFApoptosis control defects such as the deregulation of Bcl-2 family member expression are frequently involved in chemoresistance. In ovarian carcinoma, we previously demonstrated that Bcl-xL and Mcl-1 cooperate to protect cancer cells against apoptosis and their concomitant inhibition leads to massive apoptosis even in the absence of chemotherapy. Whereas Bcl-xL inhibitors are now available, Mcl-1 inhibition, required to sensitize cells to Bcl-xL-targeting strategies, remains problematic.
View Article and Find Full Text PDFWe sought to identify miRNAs that can efficiently induce apoptosis in ovarian cancer cells by overcoming BCL-X(L) and MCL1 anti-apoptotic activity, using combined computational and experimental approaches. We found that miR-491-5p efficiently induces apoptosis in IGROV1-R10 cells by directly inhibiting BCL-X(L) expression and by inducing BIM accumulation in its dephosphorylated form. This latter effect is due to direct targeting of epidermal growth factor receptor (EGFR) by miR-491-5p and consequent inhibition of downstream AKT and MAPK signalling pathways.
View Article and Find Full Text PDFWe previously showed that Bcl-xL and Mcl-1 cooperatively protect platinum-resistant ovarian cancer cells from apoptosis. Here we assessed the anticancer potential of combining ABT-737-induced inhibition of Bcl-xL with Mcl-1 inhibition via PI3K/Akt/mTOR pathway disruption using NVP-BEZ235. NVP-BEZ235 inhibited cell proliferation without inducing apoptosis.
View Article and Find Full Text PDFWe report the development of folate-functionalized nanoparticles able to target folate receptors, and to deliver a poorly water soluble cytotoxic agent, a tripentone, in ovarian carcinoma. The stability under incubation of lipid nanoparticles formulated by a low-energy phase inversion temperature method was investigated. Thanks to the presence of Labrasol(®), a macrogolglyceride into the composition of the nanocarriers, the conjugation of different quantities of a folate derivate (folic acid-polyethylene glycol2000-distearylphosphatidylethanolamine) to nanoparticles was possible by a rapid, soft, very simple post-insertion process.
View Article and Find Full Text PDFBackground: Our work has been carried out in the context of the therapeutic failure in ovarian carcinoma, which remains the leading cause of death by gynecologic malignancy. In these tumours, recurrence and subsequent acquired chemoresistance constitute major hurdles to successful therapy. Here we studied the interest of a member of the tripentone chemical family, MR22388, for the treatment of chemoresistant ovarian cancer cells.
View Article and Find Full Text PDF