The WRN protein is vital for managing perturbed replication forks. Replication Protein A strongly enhances WRN helicase activity in specific in vitro assays. However, the in vivo significance of RPA binding to WRN has largely remained unexplored.
View Article and Find Full Text PDFReplication stress refers to slowing or stalling of replication fork progression during DNA synthesis that disrupts faithful copying of the genome. While long considered a nexus for DNA damage, the role of replication stress in aging is under-appreciated. The consequential role of replication stress in promotion of organismal aging phenotypes is evidenced by an extensive list of hereditary accelerated aging disorders marked by molecular defects in factors that promote replication fork progression and operate uniquely in the replication stress response.
View Article and Find Full Text PDFG-quadruplex (G4) DNA or RNA poses a unique nucleic acid structure in genomic transactions. Because of the unique topology presented by G4, cells have exquisite mechanisms and pathways to metabolize G4 that arise in guanine-rich regions of the genome such as telomeres, promoter regions, ribosomal DNA, and other chromosomal elements. G4 resolvases are often represented by a class of molecular motors known as helicases that disrupt the Hoogsteen hydrogen bonds in G4 by harnessing the chemical energy of nucleoside triphosphate hydrolysis.
View Article and Find Full Text PDFPervasive transcriptional activity is observed across diverse species. The genomes of extant organisms have undergone billions of years of evolution, making it unclear whether these genomic activities represent effects of selection or 'noise'. Characterizing default genome states could help understand whether pervasive transcriptional activity has biological meaning.
View Article and Find Full Text PDFThe loss of the tail is among the most notable anatomical changes to have occurred along the evolutionary lineage leading to humans and to the 'anthropomorphous apes', with a proposed role in contributing to human bipedalism. Yet, the genetic mechanism that facilitated tail-loss evolution in hominoids remains unknown. Here we present evidence that an individual insertion of an Alu element in the genome of the hominoid ancestor may have contributed to tail-loss evolution.
View Article and Find Full Text PDFGenetically engineered mouse models (GEMMs) help us to understand human pathologies and develop new therapies, yet faithfully recapitulating human diseases in mice is challenging. Advances in genomics have highlighted the importance of non-coding regulatory genome sequences, which control spatiotemporal gene expression patterns and splicing in many human diseases. Including regulatory extensive genomic regions, which requires large-scale genome engineering, should enhance the quality of disease modelling.
View Article and Find Full Text PDFEnhancer function is frequently investigated piecemeal using truncated reporter assays or single deletion analysis. Thus it remains unclear to what extent enhancer function at native loci relies on surrounding genomic context. Using the Big-IN technology for targeted integration of large DNAs, we analyzed the regulatory architecture of the murine / locus, a paradigmatic model of enhancer selectivity.
View Article and Find Full Text PDFMacroglia (astrocytes and oligodendrocytes) are required for normal development and function of the central nervous system, yet many questions remain about their emergence during the development of the brain and spinal cord. Here we used single-cell/single-nucleus RNA sequencing (scRNA-seq/snRNA-seq) to analyze over 298,000 cells and nuclei during macroglia differentiation from mouse embryonic and human-induced pluripotent stem cells. We computationally identify candidate genes involved in the fate specification of glia in both species and report heterogeneous expression of astrocyte surface markers across differentiating cells.
View Article and Find Full Text PDFThe WRN protein mutated in the hereditary premature aging disorder Werner syndrome plays a vital role in handling, processing, and restoring perturbed replication forks. One of its most abundant partners, Replication Protein A (RPA), has been shown to robustly enhance WRN helicase activity in specific cases when tested . However, the significance of RPA-binding to WRN at replication forks in vivo has remained largely unexplored.
View Article and Find Full Text PDFThe recently published article in by the Sinclair lab and collaborators entitled "Loss of Epigenetic Information as a Cause of Mammalian Aging" [1] implicates heritable changes in gene expression as the basis for aging, a postulate consistent with the emerging information theory of aging. Sinclair's group and colleagues induced epigenetic changes, i.e.
View Article and Find Full Text PDFUse of synthetic genomics to design and build 'big' DNA has revolutionized our ability to answer fundamental biological questions by employing a bottom-up approach. Saccharomyces cerevisiae, or budding yeast, has become the major platform to assemble large synthetic constructs thanks to its powerful homologous recombination machinery and the availability of well-established molecular biology techniques. However, introducing designer variations to episomal assemblies with high efficiency and fidelity remains challenging.
View Article and Find Full Text PDFSox2 expression in mouse embryonic stem cells (mESCs) depends on a distal cluster of DNase I hypersensitive sites (DHSs), but their individual contributions and degree of interdependence remain a mystery. We analyzed the endogenous Sox2 locus using Big-IN to scarlessly integrate large DNA payloads incorporating deletions, rearrangements, and inversions affecting single or multiple DHSs, as well as surgical alterations to transcription factor (TF) recognition sequences. Multiple mESC clones were derived for each payload, sequence-verified, and analyzed for Sox2 expression.
View Article and Find Full Text PDFCharacterizing the molecular deficiencies underlying human aging has been a formidable challenge as it is clear that a complex myriad of factors including genetic mutations, environmental influences, and lifestyle choices influence the deterioration responsible for human pathologies. In addition, the common denominators of human aging, exemplified by the newly updated hallmarks of aging (López-Otín et al., 2023), suggest multiple avenues and layers of crosstalk between pathways important for genome and cellular homeostasis, both of which are major determinants of both good health and lifespan.
View Article and Find Full Text PDFReplication of the 30-kilobase genome of SARS-CoV-2, responsible for COVID-19, is a key step in the coronavirus life cycle that requires a set of virally encoded nonstructural proteins such as the highly conserved Nsp13 helicase. However, the features that contribute to catalytic properties of Nsp13 are not well established. Here, we biochemically characterized the purified recombinant SARS-CoV-2 Nsp13 helicase protein, focusing on its catalytic functions, nucleic acid substrate specificity, nucleotide/metal cofactor requirements, and displacement of proteins from RNA molecules proposed to be important for its proofreading role during coronavirus replication.
View Article and Find Full Text PDFHelicases, DNA translocases, nucleases and DNA-binding proteins play integral roles in protecting replication forks in human cells. Perturbations to replication fork dynamics can be caused by genetic loss of key factor(s) or exposure to replication stress inducing agents that perturb the nucleotide pool, stabilize unusual DNA secondary structures, or inhibit protein function (typically catalytic activity performed by a DNA polymerase, nuclease or helicase). DNA fiber analysis is a highly resourceful and facile experimental approach to study the molecular dynamics of replication forks in living cells.
View Article and Find Full Text PDFPrecise gene expression is crucial for embryonic patterning. Intra- transcription factor binding and distal enhancer elements have emerged as the major regulatory modules controlling gene expression. However, quantifying their relative contributions has remained elusive.
View Article and Find Full Text PDFHereditary breast and ovarian cancers are frequently attributed to germline mutations in the tumor suppressor genes BRCA1 and BRCA2. BRCA1/2 act to repair double-strand breaks (DSBs) and suppress the demise of unstable replication forks. Our work elucidated a dynamic interplay between BRCA2 and the WRN DNA helicase/exonuclease defective in the premature aging disorder Werner syndrome.
View Article and Find Full Text PDFOverwriting counterselectable markers is an efficient strategy for removing wild-type DNA or replacing it with payload DNA of interest. Currently, one bottleneck of efficient genome engineering in mammals is the shortage of counterselectable (negative selection) markers that work robustly without affecting organismal developmental potential. Here, we report a conditional knockout strategy that enables efficient proaerolysin-based counterselection in mouse embryonic stem cells.
View Article and Find Full Text PDFThe specificity of interactions between genomic regulatory elements and potential target genes is influenced by the binding of insulator proteins such as CTCF, which can act as potent enhancer blockers when interposed between an enhancer and a promoter in a reporter assay. But not all CTCF sites genome-wide function as insulator elements, depending on cellular and genomic context. To dissect the influence of genomic context on enhancer blocker activity, we integrated reporter constructs with promoter-only, promoter and enhancer, and enhancer blocker configurations at hundreds of thousands of genomic sites using the transposase.
View Article and Find Full Text PDF