Publications by authors named "Brorson K"

For drug products manufactured in mammalian cells, safety assurance practices are needed during production to assure that the final medicinal product is safe from the potential risk of viral contamination. Virus filters provide viral retention for a range of viruses through robust, largely size-based retention mechanism. Therefore, a virus filtration step is commonly utilized in a well-designed recombinant therapeutic protein purification process and is a key component in an overall strategy to minimize the risks of adventitious and endogenous viral particles during the manufacturing of biotechnology products.

View Article and Find Full Text PDF

The presence of aggregates in monoclonal antibody (mAb) drug product (DP) formulations can present product quality challenges. Here we show that use of High Performance Size Exclusion Chromatography (HP-SEC), in conjunction with high-throughput dynamic light scattering (HT-DLS) analyses of mAb DPs can be a useful strategy to determine monomer content and the presence of aggregates under simulated stress conditions. This analytical approach was used to evaluate four commercially available mAb DPs under different conditions i.

View Article and Find Full Text PDF

PEGylated recombinant human granulocyte colony stimulating factor (pegfilgrastim) is used clinically to accelerate immune reconstitution following chemotherapy and is being pursued for biosimilar development. One challenge to overcome in pegfilgrastim biosimilar development is establishing pharmacokinetic (PK) similarity, which is partly due to the degree of PK variability. We herein report that commercially available G-CSF and PEG ELISA detection kits have different capacities to detect pegfilgrastim aggregates that rapidly form in vitro in physiological conditions.

View Article and Find Full Text PDF

Recent advances in high resolution mass spectrometry (MS) instrumentation and semi-automated software have led to a push toward the use of MS-based methods for quality control (QC) testing of therapeutic proteins in a cGMP environment. The approach that is most commonly being proposed for this purpose is known as the multi-attribute method (MAM). MAM is a promising approach that provides some distinct benefits compared to conventional methods currently used for QC testing of protein therapeutics, such as CEX, HILIC, and CE-SDS.

View Article and Find Full Text PDF

Capture bioprocessing unit operations were previously shown to clear or kill several log of a model mycoplasma in lab-scale spike/removal studies. Here, we confirm this observation with two additional mollicute species relevant to biotechnology products for human use: and Clearance of and from protein A column purification was similar to that seen with , though some between cycle carryover was evident, especially for However, on-resin growth studies for all three species revealed that residual mycoplasma in a column slowly die off over time rather than expanding further. Solvent/detergent exposure completely inactivated though detectable levels of remained.

View Article and Find Full Text PDF

Mycoplasma contamination events in biomanufacturing facilities can result in loss of production and costly cleanups. Mycoplasma may survive in mammalian cell cultures with only subtle changes to the culture and may penetrate the 0.2 µm filters often used in the primary clarification of harvested cell culture fluid.

View Article and Find Full Text PDF

Continuous bioprocessing holds the potential to improve product consistency, accelerate productivity, and lower cost of production. However, switching a bioprocess from traditional batch to continuous mode requires surmounting business and regulatory challenges. A key regulatory requirement for all biopharmaceuticals is virus safety, which is assured through a combination of testing and virus clearance through purification unit operations.

View Article and Find Full Text PDF

There is a trend across the pharmaceutical sector toward process intensification and continuous manufacturing to produce small-molecule drugs or biotechnology products. For biotechnology products, advancing the manufacturing technology behind upstream and downstream processes has the potential to reduce product shortages and variability, allow for production flexibility, simplify scale-up procedures, improve product quality, reduce facility footprints, increase productivity, and reduce production costs. On the upstream side of biotechnology manufacturing, continuous perfusion cell cultures are fairly well established.

View Article and Find Full Text PDF

Metal ions can be enzyme cofactors and can directly influence the kinetics of biochemical reactions that also influence the biological production and quality attributes of therapeutic proteins, such as glycan formation and distribution. However, the concentrations of metals in commercially available chemically defined media can range from 1 to 25,000 ppb. Because such concentration changes can impact cell growth, manufacturing yield and product quality the alteration/fluctuation in media composition should be well controlled to maintain product quality.

View Article and Find Full Text PDF

Stability of therapeutic proteins (TPs) is a critical quality attribute that impacts both safety and efficacy of the drug. Size stability is routinely performed during and after biomanufacturing. Dynamic light scattering (DLS) is a commonly used technique to characterize hydrodynamic size of the TPs.

View Article and Find Full Text PDF

A multi-tiered approach to determine the binding mechanism of viral clearance utilizing a multi-modal anion exchange resin was applied to a panel of four viral species that are typically used in validating viral clearance studies (i.e., X-MuLV, MVM, REO3, and PrV).

View Article and Find Full Text PDF

Amino acids and glucose consumption, cell growth and monoclonal antibody (mAb) production in mammalian cell culture are key considerations during upstream process and particularly media optimization. Understanding the interrelations and the relevant cellular physiology will provide insight for setting strategy of robust and effective mAb production. The aim of this study was to further our understanding of nutrient consumption metabolism, since this could have significant impact on enhancing mAb titer, cell proliferation, designing feeding strategies, and development of feed media.

View Article and Find Full Text PDF

Bacteriophage binding mechanisms to multi-modal anion exchange resin may include both anion exchange and hydrophobic interactions, or the mechanism can be dominated by a single moiety. However, previous studies have reported binding mechanisms defined for simple solutions containing only buffer and a surrogate viral spike (i.e.

View Article and Find Full Text PDF

Host cell proteins (HCPs) are a heterogeneous mixture of impurities that should be minimized in bulk preparations of biotechnologically produced medicines. Immunoassays are commonly used to detect and measure HCPs in therapeutic products, and a successful assay is directly dependent on the quality of the polyclonal antibodies (pAbs) used. These pAbs are enriched from antisera of animals immunized with a broad mixture of HCPs, but there is limited information regarding the best strategy for purification of these critical reagents.

View Article and Find Full Text PDF

A rapid and cost-effective transient transfection method for mammalian cells is essential for screening biopharmaceuticals in early stages of development. A library of 25 amphipathic trans-acting oligodeoxythymidine phosphorothioate triester (dTtaPS) transfection reagents, carrying positively charged and lipophilic groups, has been constructed for this purpose. High-throughput screening of the library, using an imaging cytometer and an automated microbioreactor system, has led to the identification of dTtaPS as a potent transfection reagent.

View Article and Find Full Text PDF

A high-salt, hydrophobic interaction chromatography (HIC) method was developed to measure the relative hydrophobicity of a diverse set of solutes. Through the careful control of buffer pH and salt concentration, this assay was then used to ascertain for the first time the relative hydrophobicity values of three different bacteriophage, four mammalian viruses, and a range of biotech medicinal proteins as benchmarked to protein standards previously characterized for hydrophobicity.

View Article and Find Full Text PDF

Viral clearance is a critical aspect of biopharmaceutical manufacturing process validation. To determine the viral clearance efficacy of downstream chromatography and filtration steps, live viral "spiking" studies are conducted with model mammalian viruses such as minute virus of mice (MVM). However, due to biosafety considerations, spiking studies are costly and typically conducted in specialized facilities.

View Article and Find Full Text PDF

Monoclonal antibodies are mainly produced by mammalian cell culture, which due to its complexity, results in a wide range of product variants/isoforms. With the growing implementation of Quality by Design (QbD) and Process Analytical Technology (PAT) in drug manufacturing, monitoring and controlling quality attributes within a predefined range during manufacturing may provide added consistency to product quality. To implement these concepts, more robust analytical tools could reduce the time needed for monitoring quality attributes during upstream processing.

View Article and Find Full Text PDF

Multi-modal anion exchange resins combine properties of both anion exchange and hydrophobic interaction chromatography for commercial protein polishing and may provide some viral clearance as well. From a regulatory viral clearance claim standpoint, it is unclear if multi-modal resins are truly orthogonal to either single-mode anion exchange or hydrophobic interaction columns. To answer this, a strategy of solute surface assays and High Throughput Screening of resin in concert with a scale-down model of large scale chromatography purification was employed to determine the predominant binding mechanisms of a panel of bacteriophage (i.

View Article and Find Full Text PDF

Mycoplasmas are a type of bacteria that lack cell walls and are occasional cell culture contaminants. In a biotechnology setting, because they can pass through 0.2 μm filters, mycoplasmas could pose a potential patient safety hazard if undetected contaminants from the production culture were not completely removed by downstream biotechnology manufacturing.

View Article and Find Full Text PDF

Linkage of upstream cell culture with downstream processing and purification is an aspect of Quality by Design crucial for efficient and consistent production of high quality biopharmaceutical proteins. In a previous Plackett-Burman screening study of parallel bioreactor cultures we evaluated main effects of 11 process variables, such as agitation, sparge rate, feeding regimens, dissolved oxygen set point, inoculation density, supplement addition, temperature, and pH shifts. In this follow-up study, we observed linkages between cell culture process parameters and downstream capture chromatography performance and subsequent antibody attributes.

View Article and Find Full Text PDF

This is an "11 factor-2 level-12 run" Plackett-Burman experimental design dataset. The dataset includes 11 engineering bioreactor parameters as input variables. These 11 factors were varied at 2 levels and 23 response variables that are glycan profile attributes, were measured "A Design Space Exploration for Control of Critical Quality Attributes of mAb" (H.

View Article and Find Full Text PDF