Publications by authors named "Broqua P"

Lanifibranor, a pan-PPAR agonist, improves liver histology in patients with metabolic dysfunction-associated steatohepatitis (MASH), who have poor cardiometabolic health (CMH) and cardiovascular events as major mortality cause. NATIVE trial secondary and exploratory outcomes (ClinicalTrials.gov NCT03008070) were analyzed for the effect of lanifibranor on IR, lipid and glucose metabolism, systemic inflammation, blood pressure (BP), hepatic steatosis (imaging and histological grading) for all patients of the original analysis.

View Article and Find Full Text PDF

Mucopolysaccharidosis type VI (MPS VI) is an autosomal recessive lysosomal storage disorder characterized by deficient activity of arylsulfatase B enzyme (ASB) resulting in cellular accumulation of dermatan sulfate (DS) and chondroitin sulfate (CS) that leads to cell injury. Urinary glycosaminoglycans (GAG) are often used as a biomarker in MPS diseases for diagnosis and to monitor treatment efficacy. This study evaluated leukocyte GAGs (leukoGAG) and skin GAGs as alternate biomarkers representing intracellular GAG changes in patients with MPS VI and treated with enzyme replacement therapy (ERT).

View Article and Find Full Text PDF

Deficiencies of lysosomal enzymes responsible for the degradation of glycosaminoglycans (GAG) cause pathologies commonly known as the mucopolysaccharidoses (MPS). Each type of MPS is caused by a deficiency in a specific GAG-degrading enzyme and is characterized by an accumulation of disease-specific GAG species. Previously, we have shown the potential of the beta-D-xyloside, odiparcil, as an oral GAG clearance therapy for Maroteaux-Lamy syndrome (MPS VI), an MPS characterized by an accumulation of chondroitin sulphate (CS) and dermatan sulphate (DS).

View Article and Find Full Text PDF

Tumor-infiltrating CD8 + T cells progressively lose functionality and fail to reject tumors. The underlying mechanism and re-programing induced by checkpoint blockers are incompletely understood. We show here that genetic ablation or pharmacological inhibition of histone lysine methyltransferase Suv39h1 delays tumor growth and potentiates tumor rejection by anti-PD-1.

View Article and Find Full Text PDF

Background: Management of nonalcoholic steatohepatitis (NASH) is an unmet clinical need. Lanifibranor is a pan-PPAR (peroxisome proliferator-activated receptor) agonist that modulates key metabolic, inflammatory, and fibrogenic pathways in the pathogenesis of NASH.

Methods: In this phase 2b, double-blind, randomized, placebo-controlled trial, patients with noncirrhotic, highly active NASH were randomly assigned in a 1:1:1 ratio to receive 1200 mg or 800 mg of lanifibranor or placebo once daily for 24 weeks.

View Article and Find Full Text PDF

Background: The TβRII∆k-fib transgenic (TG) mouse model of scleroderma replicates key fibrotic and vasculopathic complications of systemic sclerosis through fibroblast-directed upregulation of TGFβ signalling. We have examined peroxisome proliferator-activated receptor (PPAR) pathway perturbation in this model and explored the impact of the pan-PPAR agonist lanifibranor on the cardiorespiratory phenotype.

Methods: PPAR pathway gene and protein expression differences from TG and WT sex-matched littermate mice were determined at baseline and following administration of one of two doses of lanifibranor (30 mg/kg or 100 mg/kg) or vehicle administered by daily oral gavage up to 4 weeks.

View Article and Find Full Text PDF

Background & Aims: In advanced chronic liver disease (ACLD), deregulated hepatic necroinflammatory processes play a key role in the development of liver microvascular dysfunction, fibrogenesis, and increased hepatic vascular tone, resulting in progression of ACLD and portal hypertension. Given the current lack of an effective treatment, we aimed to characterise the effects of the pan-peroxisome proliferator-activated receptor (pan-PPAR) agonist lanifibranor in 2 preclinical models of ACLD, as well as in liver cells from patients with ACLD.

Methods: Cirrhotic rats (thioacetamide or common bile duct ligation; TAA or cBDL) randomly received lanifibranor (100 mg/kg/day, po) or vehicle for 14 days (n = 12/group).

View Article and Find Full Text PDF

Mucopolysaccharidoses are a class of lysosomal storage diseases, characterized by enzymatic deficiency in the degradation of specific glycosaminoglycans (GAG). Pathological accumulation of excess GAG leads to multiple clinical symptoms with systemic character, most severely affecting bones, muscles and connective tissues. Current therapies include periodic intravenous infusion of supplementary recombinant enzyme (Enzyme Replacement Therapy-ERT) or bone marrow transplantation.

View Article and Find Full Text PDF

A high-throughput screen against Inventiva's compound library using a Gal4/RORγ-LBD luciferase reporter gene assay led to the discovery of a new series of quinoline sulphonamides as RORγ inhibitors, eventually giving rise to a lead compound having an interesting in vivo profile after oral administration. This lead was evaluated in a target engagement model in mouse, where it reduced IL-17 cytokine production after immune challenge. It also proved to be active in a multiple sclerosis model (EAE) where it reduced the disease score.

View Article and Find Full Text PDF

Here, we describe the identification and synthesis of novel indole sulfonamide derivatives that activate the three peroxisome proliferator activated receptor (PPAR) isoforms. Starting with a PPARα activator, compound 4, identified during a high throughput screening (HTS) of our proprietary screening library, a systematic optimization led to the discovery of lanifibranor (IVA337) 5, a moderately potent and well balanced pan PPAR agonist with an excellent safety profile. In vitro and in vivo, compound 5 demonstrated strong activity in models that are relevant to nonalcoholic steatohepatitis (NASH) pathophysiology suggesting therapeutic potential for NASH patients.

View Article and Find Full Text PDF

IVA337 is a pan-peroxisome proliferator-activated receptor (PPAR) agonist with moderate and well-balanced activity on the three PPAR isoforms (α, γ, δ). PPARs are regulators of lipid metabolism, inflammation, insulin resistance, and fibrogenesis. Different single or dual PPAR agonists have been investigated for their therapeutic potential in nonalcoholic steatohepatitis (NASH), a chronic liver condition in which steatosis coexists with necroinflammation, potentially leading to liver fibrosis and cirrhosis.

View Article and Find Full Text PDF

Objective: To evaluate the antifibrotic effects of the pan-peroxisome proliferator-activated receptor (PPAR) agonist IVA337 in preclinical mouse models of pulmonary fibrosis and related pulmonary hypertension (PH).

Methods: IVA337 has been evaluated in the mouse model of bleomycin-induced pulmonary fibrosis and in Fra-2 transgenic mice, this latter being characterised by non-specific interstitial pneumonia and severe vascular remodelling of pulmonary arteries leading to PH. Mice received two doses of IVA337 (30 mg/kg or 100 mg/kg) or vehicle administered by daily oral gavage up to 4 weeks.

View Article and Find Full Text PDF

Background: The pathogenesis of systemic sclerosis (SSc) involves a distinctive triad of autoimmune, vascular and inflammatory alterations resulting in fibrosis. Evidence suggests that peroxisome proliferator-activated receptors (PPARs) play an important role in SSc-related fibrosis and their agonists may become effective therapeutic targets.

Objective: To determine the expression of PPARs in human fibrotic skin and investigate the effects of IVA337, a pan PPAR agonist, in in vitro and in vivo models of fibrosis.

View Article and Find Full Text PDF

The preclinical characterization of WS-50030 [7-{4-[3-(1H-inden-3-yl)propyl]piperazin-1-yl}-1,3-benzoxazol-2(3H)-one] is described. In vitro binding and functional studies revealed highest affinity to the D(2) receptor (D(2L) K(i), 4.0 nM) and serotonin transporter (K(i), 7.

View Article and Find Full Text PDF

Degarelix (FE 200486) is a member of a new class of water-soluble (>50 mg/ml) gonadotropin-releasing hormone (GnRH) antagonists in clinical development for prostate cancer. Upon subcutaneous administration, degarelix forms a gel that results in a sustained release of the compound into the circulation, immediately blocking GnRH receptors in the pituitary and inducing a fast and sustained suppression of gonadotrophin secretion in rats and primates. One of the few animal models of prostate adenocarcinoma is the Dunning R-3327H rat carcinoma transplanted into Copenhagen rats.

View Article and Find Full Text PDF

Poly (DL-lactide-co-glycolide) microparticles (MP) containing a highly potent peptidic gonadotropin releasing hormone antagonist (degarelix) of interest in the prostate cancer indication were screened for biological performance. Efficacy was tested in a castrated male rat model at 3 doses (0.4, 1.

View Article and Find Full Text PDF

Acute suppression of dipeptidyl peptidase IV (DPP-IV) activity improves glucose tolerance in the Zucker fatty rat, a rodent model of impaired glucose tolerance, through stabilization of glucagon-like peptide (GLP)-1. This study describes the effects of a new and potent DPP-IV inhibitor, FE 999011, which is able to suppress plasma DPP-IV activity for 12 h after a single oral administration. In the Zucker fatty rat, FE 999011 dose-dependently attenuated glucose excursion during an oral glucose tolerance test and increased GLP-1 (7-36) release in response to intraduodenal glucose.

View Article and Find Full Text PDF

We describe the pharmacological profile in rats and monkeys of degarelix (FE200486), a member of a new class of long-acting gonadotropin-releasing hormone (GnRH) antagonists. At single subcutaneous injections of 0.3 to 10 microg/kg in rats, degarelix produced a dose-dependent suppression of the pituitary-gonadal axis as revealed by the decrease in plasma luteinizing hormone (LH) and testosterone levels.

View Article and Find Full Text PDF

Neuropeptide Y (NPY) is involved in the central regulation of appetite, sexual behavior, and reproductive function. We have previously shown that chronic infusion of NPY into the lateral ventricle of normal rats produced an obesity syndrome characterized by hyperphagia, hyperinsulinism and collapse of reproductive function. We further demonstrated that acute inhibition of LH secretion in castrated rats was preferentially mediated by the NPY receptor subtype 5 (Y(5)).

View Article and Find Full Text PDF

We report the clinical evolution of a prostate cancer, metastasizing to lungs and bones, recurring locally, and escaping from anti-androgen therapy. Key event of biological progression of the patient's tumor was the coincidence of allelic imbalance accumulation and of bone metastases occurrence. The recurrent tumor was established as the transplantable xenograft PAC120 in nude mice, where it grew locally.

View Article and Find Full Text PDF

A series of antagonists of gonadotropin-releasing hormone (GnRH) of the general formula Ac-D2Nal-D4Cpa-D3Pal-Ser-4Aph/4Amf(P)-D4Aph/D4Amf(Q)-Leu-ILys-Pro-DAla-NH2 was synthesized, characterized, and screened for duration of inhibition of luteinizing hormone release in a castrated male rat assay. Selected analogues were tested in a reporter gene assay (IC50 and pA2) and an in vitro histamine release assay. P and Q contain urea/carbamoyl functionalities designed to increase potential intra- and intermolecular hydrogen bonding opportunities for structural stabilization and peptide/receptor interactions, respectively.

View Article and Find Full Text PDF

Neuropeptide Y (NPY) is a powerful orexigenic factor, and alphaMSH is a melanocortin (MC) peptide that induces satiety by activating the MC4 receptor subtype. Genetic models with disruption of MC4 receptor signaling are associated with obesity. In the present study, a 7-day intracerebroventricular infusion to male rats of either the MC receptor antagonist SHU9119 or porcine NPY (10 nmol/day) was shown to strongly stimulate food and water intake and to markedly increase fat pad mass.

View Article and Find Full Text PDF

Neuropeptide Y (NPY) is a highly potent orexigenic substance that is also known to modulate gonadotropin secretion. Five receptor subtypes for NPY have been identified, and a potent antagonist for the receptor subtype 1 (Y1), 1229U91, also known as GW1229 or GR231118, has been described. Subsequently, 1229U91 was also shown to represent a highly potent agonist for the Y4 receptor subtype.

View Article and Find Full Text PDF

A number of studies have indicated that neuropeptide Y (NPY) is a central regulator of the gonadotropic axis, and the Y1 receptor was initially suggested to be implicated. As at least five different NPY receptor subtypes have now been characterized, the aim of the present study was to reinvestigate the pharmacological profile of the receptor(s) mediating the inhibitory action of NPY on LH secretion by using a panel of NPY analogs with different selectivity toward the five NPY receptor subtypes. When given intracerebroventricularly (icv) to castrated rats, a bolus injection of native NPY (0.

View Article and Find Full Text PDF