The administration of progesterone as a neuroprotective agent following traumatic brain injury has recently entered phase III clinical trials. Previous work has demonstrated that therapeutic concentrations of progesterone decrease excitotoxicity through direct inhibition of voltage-gated calcium channels, an action independent of the nuclear progesterone receptor. Here we report using cultured rat striatal neurons that these same concentrations of progesterone also block voltage-gated potassium channels, sodium channels and GABA(A) currents.
View Article and Find Full Text PDFThe therapeutic use of progesterone following traumatic brain injury has recently entered phase III clinical trials as a means of neuroprotection. Although it has been hypothesized that progesterone protects against calcium overload following excitotoxic shock, the exact mechanisms underlying the beneficial effects of progesterone have yet to be determined. We found that therapeutic concentrations of progesterone to be neuroprotective against depolarization-induced excitotoxicity in cultured striatal neurons.
View Article and Find Full Text PDFOverexpression of the amyloid precursor protein (APP) in hippocampal neurons leads to elevated beta-amyloid peptide (Abeta) production and consequent depression of excitatory transmission. The precise mechanisms underlying APP-induced synaptic depression are poorly understood. Uncovering these mechanisms could provide insight into how neuronal function is compromised before cell death during the early stages of Alzheimer's disease.
View Article and Find Full Text PDFSynaptotagmin IV (Syt IV) is a brain-specific isoform of the synaptotagmin family, the levels of which are strongly elevated after seizure activity. The dominant hypothesis of Syt IV function states that Syt IV upregulation is a neuroprotective mechanism for reducing neurotransmitter release. To test this hypothesis in mammalian CNS synapses, Syt IV was overexpressed in cultured mouse hippocampal neurons, and acute effects on fast excitatory neurotransmission were assessed.
View Article and Find Full Text PDFN-(hydroxyphenyl)-arachidonamide (AM404) is an inhibitor of endocannabinoid transport. We examined the effects of AM404 on glutamatergic synaptic transmission using network-driven increases in intracellular Ca2+ concentration ([Ca2+] spikes) as an assay. At a concentration of 1 microM AM404 inhibited [Ca2+]i spiking by 73+/-8%.
View Article and Find Full Text PDFCannabinoids inhibit excitatory synaptic transmission between hippocampal neurons in culture. Delta9-tetrahydrocannabinol (THC), the principal psychoactive component in marijuana, acts as a partial agonist at these synapses. Thus, THC inhibited but did not block synaptic transmission when applied alone and, when applied in combination with WIN552212-2, it partially reversed the effects of this full agonist.
View Article and Find Full Text PDF