Publications by authors named "Brooke Fridley"

Background: Single nucleotide polymorphisms (SNP) in microRNA-related genes have been associated with epithelial ovarian cancer (EOC) risk in two reports, yet associated alleles may be inconsistent across studies.

Methods: We conducted a pooled analysis of previously identified SNPs by combining genotype data from 3,973 invasive EOC cases and 3,276 controls from the Ovarian Cancer Association Consortium. We also conducted imputation to obtain dense coverage of genes and comparable genotype data for all studies.

View Article and Find Full Text PDF

The last decade of human genetic research witnessed the completion of hundreds of genome-wide association studies (GWASs). However, the genetic variants discovered through these efforts account for only a small proportion of the heritability of complex traits. One explanation for the missing heritability is that the common analysis approach, assessing the effect of each single-nucleotide polymorphism (SNP) individually, is not well suited to the detection of small effects of multiple SNPs.

View Article and Find Full Text PDF

Defective microRNA (miRNA) biogenesis contributes to the development and progression of epithelial ovarian cancer (EOC). In this study, we examined the hypothesis that single nucleotide polymorphisms (SNP) in miRNA biogenesis genes may influence EOC risk. In an initial investigation, 318 SNPs in 18 genes were evaluated among 1,815 EOC cases and 1,900 controls, followed up by a replicative joint meta-analysis of data from an additional 2,172 cases and 3,052 controls.

View Article and Find Full Text PDF

Because selected xenobiotic-metabolizing enzymes process pro-carcinogens that could initiate ovarian carcinogenesis, we hypothesized that single nucleotide polymorphisms (SNPs) in the genes encoding xenobiotic-metabolizing enzymes are associated with risk of ovarian cancer. Cases with invasive epithelial ovarian cancer (N = 1571 including 956 of serous sub-type) and controls (N = 2046) from three studies were genotyped at 11 SNPs in EPHX1, ADH4, ADH1A, NQO2, NAT2, GSTP1, CYP1A1, and NQO1, following an initial SNP screen in a subset of participants. Logistic regression analysis of genotypes obtained via Illumina GoldenGate and Sequenom iPlex technologies revealed the following age- and study-adjusted associations: EPHX1 rs1051740 with increased serous ovarian cancer risk [per-allele odds ratio (OR) 1.

View Article and Find Full Text PDF

Background: Recent reports support an association between chronic inflammation and progression to pancreatic cancer (PC).

Methods: This case-control, candidate gene association study evaluated 1,354 Caucasian patients with pancreatic ductal adenocarcinoma and 1,189 healthy Caucasian controls. We genotyped 1,538 single nucleotide polymorphism (SNP) in 102 genes from inflammatory pathways involving NF-κB.

View Article and Find Full Text PDF

Background: Mitochondria contribute to oxidative stress, a phenomenon implicated in ovarian carcinogenesis. We hypothesized that inherited variants in mitochondrial-related genes influence epithelial ovarian cancer (EOC) susceptibility.

Methods: Through a multicenter study of 1,815 Caucasian EOC cases and 1,900 controls, we investigated associations between EOC risk and 128 single nucleotide polymorphisms (SNPs) from 22 genes/regions within the mitochondrial genome (mtDNA) and 2,839 nuclear-encoded SNPs localized to 138 genes involved in mitochondrial biogenesis (BIO, n = 35), steroid hormone metabolism (HOR, n = 13), and oxidative phosphorylation (OXP, n = 90) pathways.

View Article and Find Full Text PDF

Background: We previously reported an association between rs2660753, a prostate cancer susceptibility polymorphism, and invasive epithelial ovarian cancer (EOC; OR = 1.2, 95% CI=1.0-1.

View Article and Find Full Text PDF

Mycophenolic acid (MPA) is commonly used to treat patients with solid organ transplants during maintenance immunosuppressive therapy. Response to MPA varies widely, both for efficacy and drug-induced toxicity. A portion of this variation can be explained by pharmacokinetic and pharmacodynamic factors, including genetic variation in MPA-metabolizing UDP-glucuronyltransferase isoforms and the MPA targets, inosine monophosphate dehydrogenase 1 and 2.

View Article and Find Full Text PDF

Purpose: An assay for the single-nucleotide polymorphism (SNP), rs61764370, has recently been commercially marketed as a clinical test to aid ovarian cancer risk evaluation in women with family histories of the disease. rs67164370 is in a 3'-UTR miRNA binding site of the KRAS oncogene and is a candidate for epithelial ovarian cancer (EOC) susceptibility. However, only one published article, analyzing fewer than 1,000 subjects in total, has examined this association.

View Article and Find Full Text PDF

Two recent genome-wide association studies reported that single nucleotide polymorphisms (SNPs) in (or near) TERT (5p15), CCDC26 (8q24), CDKN2A/B (9p21), PHLDB1 (11q23), and RTEL1 (20q13) are associated with infiltrating glioma. From these reports, it was not clear whether the single nucleotide polymorphism associations predispose to glioma in general or whether they are specific to certain glioma grades or morphologic subtypes. To identify hypothesized associations between susceptibility loci and tumor subtype, we genotyped two case-control groups composed of the spectrum of infiltrating glioma subtypes and stratified the analyses by type.

View Article and Find Full Text PDF

Purpose: To present genome-wide association analyses of genotypic and environmental risks on age-related macular degeneration (AMD) using 593 subjects from the age-related eye disease study (AREDS), after adjusting for population stratification and including questionable controls.

Methods: Single nucleotide polymorphism (SNP) associations with AMD for the non-Hispanic white population were investigated using a log-additive model after adjusting for population stratification. Replication of possible SNP-disease association was performed by genotyping an independent group of 444 AMD case and 300 control subjects.

View Article and Find Full Text PDF

Acetaminophen is the leading cause of acute hepatic failure in many developed nations. Acetaminophen hepatotoxicity is mediated by the reactive metabolite N-acetyl-p-benzoquinonimine (NAPQI). We performed a "discovery" genome-wide association study using a cell line-based model system to study the possible contribution of genomics to NAPQI-induced cytotoxicity.

View Article and Find Full Text PDF

Betaine-homocysteine methyltransferase (BHMT) catalyzes the remethylation of homocysteine. BHMT is highly expressed in the human liver. In the liver, BHMT catalyzes up to 50% of homocysteine metabolism.

View Article and Find Full Text PDF

Radiation therapy is used to treat half of all cancer patients. Response to radiation therapy varies widely among patients. Therefore, we performed a genome-wide association study (GWAS) to identify biomarkers to help predict radiation response using 277 ethnically defined human lymphoblastoid cell lines (LCLs).

View Article and Find Full Text PDF

Gene set methods aim to assess the overall evidence of association of a set of genes with a phenotype, such as disease or a quantitative trait. Multiple approaches for gene set analysis of expression data have been proposed. They can be divided into two types: competitive and self-contained.

View Article and Find Full Text PDF

Thiopurine drugs such as 6-mercaptopurine (6-MP) and 6-thioguanine (6-TG) are used to treat acute lymphoblastic leukemia of childhood. To test the hypothesis that variation in the expression of genes within the "thiopurine pathway" might influence 6-MP and 6-TG sensitivity, we generated basal gene expression profiles and IC(50) values for both of these thiopurine drugs using a model system consisting of 194 Human Variation Panel lymphoblastoid cell lines. Association analysis showed that thiopurine S-methyltransferase, ecto-5'-nucleotidase (NT5E), and multidrug resistance protein 4 (ABCC4) expression were correlated with thiopurine cytotoxicity.

View Article and Find Full Text PDF

Epithelial ovarian cancer (EOC) is the leading cause of death from gynecological malignancy in the developed world, accounting for 4% of the deaths from cancer in women. We performed a three-phase genome-wide association study of EOC survival in 8,951 individuals with EOC (cases) with available survival time data and a parallel association analysis of EOC susceptibility. Two SNPs at 19p13.

View Article and Find Full Text PDF

Ovarian cancer accounts for more deaths than all other gynecological cancers combined. To identify common low-penetrance ovarian cancer susceptibility genes, we conducted a genome-wide association study of 507,094 SNPs in 1,768 individuals with ovarian cancer (cases) and 2,354 controls, with follow up of 21,955 SNPs in 4,162 cases and 4,810 controls, leading to the identification of a confirmed susceptibility locus at 9p22 (in BNC2). Here, we report on nine additional candidate loci (defined as having P ≤ 10⁻⁴) identified after stratifying cases by histology, which we genotyped in an additional 4,353 cases and 6,021 controls.

View Article and Find Full Text PDF

Objective: To investigate the association between self-reported endometriosis and the putative functional promoter +331C/T single nucleotide polymorphism and the PROGINS allele.

Design: Control subjects from ovarian cancer case-control studies participating in the international Ovarian Cancer Association Consortium. The majority of controls are drawn from population-based studies.

View Article and Find Full Text PDF

In the last decade, numerous genome-wide linkage and association studies of complex diseases have been completed. The critical question remains of how to best use this potentially valuable information to improve study design and statistical analysis in current and future genetic association studies. With genetic effect size for complex diseases being relatively small, the use of all available information is essential to untangle the genetic architecture of complex diseases.

View Article and Find Full Text PDF

Background: We previously reported the risks of ovarian carcinoma for common polymorphisms in one-carbon transfer genes. We sought to replicate associations for DPYD rs1801265, DNMT3A rs13420827, MTHFD1 rs1950902, MTHFS rs17284990, and TYMS rs495139 with risk of ovarian carcinoma overall and to use the large sample of assembled cases to investigate associations by histologic type.

Methods: Associations were evaluated in the Ovarian Cancer Association Consortium, including 16 studies of 5,593 epithelial ovarian carcinoma cases and 9,962 controls of white non-Hispanic origin.

View Article and Find Full Text PDF

Objective: Numerous methods have been proposed to model the association between multiple single nucleotide polymorphisms (SNPs) and a phenotype. Often these methods do not explicitly model the information regarding the linkage disequilibrium (LD) between SNPs. Furthermore, many methods shrink the SNP effects towards zero, rather than to an unknown latent gene-level effect.

View Article and Find Full Text PDF

Genetic risk factors are important contributors to the development of colorectal cancer. Following the definition of a linkage signal at 9q22-31, we fine mapped this region in an independent collection of colon cancer families. We used a custom array of single-nucleotide polymorphisms (SNP) densely spaced across the candidate region, performing both single-SNP and moving-window association analyses to identify a colon neoplasia risk haplotype.

View Article and Find Full Text PDF

Background: In recent years, capabilities for genotyping large sets of single nucleotide polymorphisms (SNPs) has increased considerably with the ability to genotype over 1 million SNP markers across the genome. This advancement in technology has led to an increase in the number of genome-wide association studies (GWAS) for various complex traits. These GWAS have resulted in the implication of over 1500 SNPs associated with disease traits.

View Article and Find Full Text PDF

The Pharmacogenomics Research Network holds a statistical analysis workshop every other year to share novel statistical methods and study designs for pharmacogenomics research, as well as insightful analyses of substantive ongoing studies. The 5th workshop was held 15 April 2009, in Rochester (MN, USA), in conjunction with the general Pharmacogenomics Research Network meeting. This summary of the ten contributed talks highlights a variety of timely topics, including identification of functional variants, how to maximize power using various study designs, and pathway analysis approaches.

View Article and Find Full Text PDF