Decreases in body sizes of animals related to recent climate warming can affect population persistence and stability. However, direct observations of average sizes over time and their interrelationships with underlying density-dependent and density-independent processes remain poorly understood owing to the lack of appropriate long-term datasets. We measured body size of two species common to headwater streams in coastal and Cascades ecoregions of the Pacific Northwest of North America over multiple decades, comparing old-growth and managed forests.
View Article and Find Full Text PDFEcosystems that are coupled by reciprocal flows of energy and nutrient subsidies can be viewed as a single "meta-ecosystem." Despite these connections, the reciprocal flow of subsidies is greatly asymmetrical and seasonally pulsed. Here, we synthesize existing literature on stream-riparian meta-ecosystems to quantify global patterns of the amount of subsidy consumption by organisms, known as "allochthony.
View Article and Find Full Text PDFSpecies detection using eDNA is revolutionizing global capacity to monitor biodiversity. However, the lack of regional, vouchered, genomic sequence information-especially sequence information that includes intraspecific variation-creates a bottleneck for management agencies wanting to harness the complete power of eDNA to monitor taxa and implement eDNA analyses. eDNA studies depend upon regional databases of mitogenomic sequence information to evaluate the effectiveness of such data to detect and identify taxa.
View Article and Find Full Text PDFThe use of environmental DNA (eDNA) to assess aquatic biodiversity is a growing field with great potential for monitoring and managing threatened species, like freshwater mussel (Unionidae) populations. Freshwater mussels are globally imperiled and serve essential roles in aquatic systems as a food source and as a natural water filter making their management essential for ecosystem health. Unfortunately, mussel populations are often understudied, and challenges exist to accurately and efficiently describe the full suite of species present.
View Article and Find Full Text PDFPredicting the edges of species distributions is fundamental for species conservation, ecosystem services, and management decisions. In North America, the location of the upstream limit of fish in forested streams receives special attention, because fish-bearing portions of streams have more protections during forest management activities than fishless portions. We present a novel model development and evaluation framework, wherein we compare 26 models to predict upper distribution limits of trout in streams.
View Article and Find Full Text PDFSpecies introductions threaten ecosystem function worldwide, and interactions among introduced species may amplify their impacts. Effects of multiple invasions are still poorly studied, and often, the mechanisms underlying potential interactions among invaders are unknown. Despite being a remote and well-conserved area, the southern portion of South America has been greatly impacted by invasions of both the American beaver () and Brown Trout ().
View Article and Find Full Text PDFSeasonal changes in the magnitude and duration of streamflow can have important implications for aquatic species, drinking water supplies, and water quality. In many regions, including the Pacific Northwest (U.S.
View Article and Find Full Text PDFEnvironmental DNA (eDNA) is an emerging biological monitoring tool that can aid in assessing the effects of forestry and forest manufacturing activities on biota. Monitoring taxa across broad spatial and temporal scales is necessary to ensure forest management and forest manufacturing activities meet their environmental goals of maintaining biodiversity. Our objectives are to describe potential applications of eDNA across the wood products supply chain extending from regenerating forests, harvesting, and wood transport, to manufacturing facilities, and to review the current state of the science in this context.
View Article and Find Full Text PDFLand use and climate change occur simultaneously around the globe. Fully understanding their separate and combined effects requires a mechanistic understanding at the local scale where their effects are ultimately realized. Here we applied an individual-based model of fish population dynamics to evaluate the role of local stream variability in modifying responses of Coastal Cutthroat Trout (Oncorhynchus clarkii clarkii) to scenarios simulating identical changes in temperature and stream flows linked to forest harvest, climate change, and their combined effects over six decades.
View Article and Find Full Text PDF