Publications by authors named "Brooke A Dilmetz"

Bottle conditioning of beer is an additional fermentation step where yeast and fermentable extract are added to the beer for carbonation. During this process, yeast must overcome environmental stresses to ensure sufficient fermentation in the bottle. Additionally, the yeast must be able to survive for a prolonged time, as a decline in viability will lead to alterations in the product.

View Article and Find Full Text PDF

Bottle conditioning occurs when yeast and a fermentable extract are added to beer prior to packaging. Aside from ethanol and carbon dioxide production, this process can minimize the production of off-flavors and increase the shelf-life of beer. The advantages of bottle conditioning rely on the yeast being able to quickly referment the beer and maintain viability during storage.

View Article and Find Full Text PDF

Beer refermentation in bottles is an industrial process utilized by breweries where yeast and fermentable extract are added to green beer. The beer is refermented for a minimum of 2 weeks before distribution, with the physiological state of the yeast a critical factor for successful refermentation. Ideally, fresh yeast that is propagated from a dedicated propagation plant should be used for refermentation in bottles.

View Article and Find Full Text PDF

Quantitation using mass spectrometry (MS) is a routine approach for multiple analytes, including small molecules and peptides. Electrospray-based MS platforms are typically employed, as they provide highly reproducible outputs for batch processing of multiple samples. Quantitation using matrix-assisted laser desorption/ionization (MALDI) time-of-flight (ToF) mass spectrometry, while less commonly adopted, offers the ability to monitor analytes at significantly higher throughput and lower cost compared with ESI MS.

View Article and Find Full Text PDF

The applicability of mass spectrometry imaging (MSI) has exponentially increased with the improvement of sample preparation, instrumentation (spatial resolution) and data analysis. The number of MSI publications listed in PubMed continues to grow with 378 published articles in 2020-2021. Initially, MSI was just sensitive enough to identify molecular features correlating with distinct tissue regions, similar to the resolution achieved by visual inspection after standard immunohistochemical staining.

View Article and Find Full Text PDF

Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS), in combination with Biotyper software, is a rapid, high-throughput, and accurate method for the identification of microbes. Microbial outbreaks in a brewery present a major risk for companies as it can lead to cost-intensive recalls and damage to the brand reputation. MALDI-TOF MS has been implemented into a brewery setting for quality control practices and the identification of beer spoilage microorganisms.

View Article and Find Full Text PDF