Publications by authors named "Brooke A Anderson"

Inefficient endosomal escape remains the primary barrier to the broad application of oligonucleotide therapeutics. Liver uptake after systemic administration is sufficiently robust that a therapeutic effect can be achieved but targeting extrahepatic tissues remains challenging. Prior attempts to improve oligonucleotide activity using small molecules that increase the leakiness of endosomes have failed due to unacceptable toxicity.

View Article and Find Full Text PDF

The introduction of phosphorothioate (PS) linkages to the backbone of therapeutic nucleic acids substantially increases their stability and potency. It also affects their interactions with cellular proteins, but the molecular mechanisms that underlie this effect are poorly understood. Here, we report structural and biochemical studies of interactions between annexin A2, a protein that does not possess any known canonical DNA binding domains, and phosphorothioate-modified antisense oligonucleotides.

View Article and Find Full Text PDF
Article Synopsis
  • - The PS modification increases the stability and protein binding of gapmer antisense oligonucleotides (ASOs) while allowing RNaseH1 activity; researchers tested the impact of adding mesyl-phosphoramidate (MsPA) linkages on various ASO properties.
  • - Although substituting PS with MsPA didn’t compromise chemical stability or RNA affinity, it did reduce the overall activity of ASOs; however, certain substitutions were shown to minimize immune response and toxicity in cells and mice.
  • - The combination of PS and MsPA linkages presents a promising new platform for developing ASO drugs that are more potent, have a better safety profile, and maintain their effectiveness for longer periods, similar to enhanced si
View Article and Find Full Text PDF

The cyanuric acid (CA) heterocycle forms supramolecular structures with adenine nucleobases/nucleosides and oligonucleotides, leading to speculation that they can act as forerunners to RNA. Herein, the assembly behavior of RNA containing CA and CA-ribose nucleoside was studied. Contrary to previous reports, CA in RNA and the CA-ribonucleoside resulted in destabilization of supramolecular assemblies, which led to a reevaluation of the CA-adenine hexameric rosette structure.

View Article and Find Full Text PDF

The phosphorothioate backbone modification (PS) is one of the most widely used chemical modifications for enhancing the drug-like properties of nucleic acid-based drugs, including antisense oligonucleotides (ASOs). PS-modified nucleic acid therapeutics show improved metabolic stability from nuclease-mediated degradation and exhibit enhanced interactions with plasma, cell-surface, and intracellular proteins, which facilitates their tissue distribution and cellular uptake in animals. However, little is known about the structural basis of the interactions of PS nucleic acids with proteins.

View Article and Find Full Text PDF

Unnatural base pairs (UBPs) have been developed and used for a variety of applications as well as for the engineering of semisynthetic organisms (SSOs) that store and retrieve increased information. However, these applications are limited by the availability of methods to rapidly and accurately determine the sequence of unnatural DNA. Here we report the development and application of the MspA nanopore to sequence DNA containing the d-d UBP.

View Article and Find Full Text PDF

Previously, we reported the creation of a semi-synthetic organism (SSO) that stores and retrieves increased information by virtue of stably maintaining an unnatural base pair (UBP) in its DNA, transcribing the corresponding unnatural nucleotides into the codons and anticodons of mRNAs and tRNAs, and then using them to produce proteins containing noncanonical amino acids (ncAAs). Here we report a systematic extension of the effort to optimize the SSO by exploring a variety of deoxy- and ribonucleotide analogues. Importantly, this includes the first in vivo structure-activity relationship (SAR) analysis of unnatural ribonucleoside triphosphates.

View Article and Find Full Text PDF

tC is a tricyclic 2'-deoxycytidine analog that can be incorporated into oligonucleotides by solid-phase synthesis and that exhibits a large fluorescence enhancement when correctly base-paired with a guanine base in a DNA-DNA duplex. The synthesis of tC begins with 5-amino-2-methylbenzothiazole and provides the tC nucleobase analog over five synthetic steps. This nucleobase analog is then silylated using N,O-bis(trimethylsilyl)acetamide and conjugated to Hoffer's chlorosugar to provide the protected tC nucleoside in good yield.

View Article and Find Full Text PDF

Pyrophosphate linkages are important in extant biology and are hypothesized to have played a role in prebiotic chemistry and in the origination of oligonucleotides. Inspired by pyrophosphate as backbones of primordial oligomers, DNA oligomers with varying amounts of pyrophosphate inserts (ppDNA) were synthesized and investigated for their base-pairing properties. As expected, pyrophosphate inserts into the backbone compromised the thermal stability of ppDNA-DNA duplexes.

View Article and Find Full Text PDF

The development of molecular strategies that enable recognition of specific double-stranded DNA (dsDNA) regions has been a longstanding goal as evidenced by the emergence of triplex-forming oligonucleotides, peptide nucleic acids (PNAs), minor groove binding polyamides, and--more recently--engineered proteins such as CRISPR/Cas9. Despite this progress, an unmet need remains for simple hybridization-based probes that recognize specific mixed-sequence dsDNA regions under physiological conditions. Herein, we introduce pseudocomplementary Invader probes as a step in this direction.

View Article and Find Full Text PDF

Targeting and invading double-stranded DNA with synthetic oligonucleotides under physiological conditions remain a challenge. Bis-locked nucleic acids (bisLNAs) are clamp-forming oligonucleotides able to invade into supercoiled DNA via combined Hoogsteen and Watson-Crick binding. To improve the bisLNA design, we investigated its mechanism of binding.

View Article and Find Full Text PDF

Pyrene-functionalized oligonucleotides are intensively explored for applications in materials science and diagnostics. Here, we describe a short synthetic route to 2'-S-(pyren-1-yl)methyl-2'-thiouridine monomer S, its incorporation into oligodeoxyribonucleotides (ONs), and biophysical characterization thereof. Pseudorotational analysis reveals that the furanose ring of this monomer has a slight preference for South-type conformations.

View Article and Find Full Text PDF

Development of probes capable of recognizing specific regions of chromosomal DNA has been a long-standing goal for chemical biologists. Current strategies such as PNA, triplex-forming oligonucleotides, and polyamides are subject to target choice limitations and/or necessitate non-physiological conditions, leaving a need for alternative approaches. Toward this end, we have recently introduced double-stranded oligonucleotide probes that are energetically activated for DNA recognition through modification with +1 interstrand zippers of intercalator-functionalized nucleotide monomers.

View Article and Find Full Text PDF

Development of probes that allow for sequence-unrestricted recognition of double-stranded DNA (dsDNA) continues to attract much attention due to the prospect for molecular tools that enable detection, regulation, and manipulation of genes. We have recently introduced so-called Invader probes as alternatives to more established approaches such as triplex-forming oligonucleotides, peptide nucleic acids and polyamides. These short DNA duplexes are activated for dsDNA recognition by installment of +1 interstrand zippers of intercalator-functionalized nucleotides such as 2'-N-(pyren-1-yl)methyl-2'-N-methyl-2'-aminouridine and 2'-O-(pyren-1-yl)methyluridine, which results in violation of the nearest neighbor exclusion principle and duplex destabilization.

View Article and Find Full Text PDF

Invader probes have been proposed as alternatives to polyamides, triplex-forming oligonucleotides, and peptide nucleic acids for recognition of chromosomal DNA targets. These double-stranded probes are activated for DNA recognition by +1 interstrand zippers of pyrene-functionalized nucleotides. This particular motif forces the intercalating pyrene moieties into the same region, resulting in perturbation and destabilization of the probe duplex.

View Article and Find Full Text PDF

Incorporation of positively charged C5-amino acid functionalized LNA uridines into oligodeoxyribonucleotides (ONs) results in extraordinary RNA affinity, binding specificity and stability towards 3'-exonucleases.

View Article and Find Full Text PDF

Oligonucleotides modified with conformationally restricted nucleotides such as locked nucleic acid (LNA) monomers are used extensively in molecular biology and medicinal chemistry to modulate gene expression at the RNA level. Major efforts have been devoted to the design of LNA derivatives that induce even higher binding affinity and specificity, greater enzymatic stability, and more desirable pharmacokinetic profiles. Most of this work has focused on modifications of LNA's oxymethylene bridge.

View Article and Find Full Text PDF

Major efforts are currently being devoted to improving the binding affinity, target specificity, and enzymatic stability of oligonucleotides used for nucleic acid targeting applications in molecular biology, biotechnology, and medicinal chemistry. One of the most popular strategies toward this end has been to introduce additional modifications to the sugar ring of affinity-inducing conformationally restricted nucleotide building blocks such as locked nucleic acid (LNA). In the preceding article in this issue, we introduced a different strategy toward this end, i.

View Article and Find Full Text PDF

The development of conformationally restricted nucleotide building blocks continues to attract considerable interest because of their successful use within antisense, antigene, and other gene-targeting strategies. Locked nucleic acid (LNA) and its diastereomer α-L-LNA are two interesting examples thereof. Oligonucleotides modified with these units display greatly increased affinity toward nucleic acid targets, improved binding specificity, and enhanced enzymatic stability relative to unmodified strands.

View Article and Find Full Text PDF

The development of synthetic agents that recognize double-stranded DNA (dsDNA) is a long-standing goal that is inspired by the promise for tools that detect, regulate, and modify genes. Progress has been made with triplex-forming oligonucleotides, peptide nucleic acids, and polyamides, but substantial efforts are currently devoted to the development of alternative strategies that overcome the limitations observed with the classic approaches. In 2005, we introduced Invader locked nucleic acids (LNAs), i.

View Article and Find Full Text PDF

N2'-Pyrene-functionalized 2'-amino-α-L-LNAs (locked nucleic acids) display extraordinary affinity toward complementary DNA targets due to favorable preorganization of the pyrene moieties for hybridization-induced intercalation. Unfortunately, the synthesis of these monomers is challenging (~20 steps, <3% overall yield), which has precluded full characterization of DNA-targeting applications based on these materials. Access to more readily accessible functional mimics would be highly desirable.

View Article and Find Full Text PDF

Single nucleotide polymorphisms (SNPs) are important markers in disease genetics and pharmacogenomic studies. Oligodeoxyribonucleotides (ONs) modified with 5-[3-(1-pyrenecarboxamido)propynyl]-2'-deoxyuridine monomer X enable detection of SNPs at non-stringent conditions due to differential fluorescence emission of matched versus mismatched nucleic acid duplexes. Herein, the thermal denaturation and optical spectroscopic characteristics of monomer X are compared to the corresponding locked nucleic acid (LNA) and α-L-LNA monomers Y and Z.

View Article and Find Full Text PDF

Triplex forming oligonucleotides (TFOs) modified with C5-alkynyl functionalized LNA (locked nucleic acid) monomers display extraordinary thermal affinity toward double stranded DNA targets, excellent discrimination of Hoogsteen-mismatched targets, and high stability against 3?-exonucleases.

View Article and Find Full Text PDF