It has recently been demonstrated that harps harvest substantively more fog water than conventional mesh nets, but the optimal design for fog harps remains unknown. Here, we systematically vary key parameters of a scale-model fog harp, the wire material, wire pitch, and wire length, to find the optimal combination. We found stainless steel to not only be the best hydrophilic wire material but also nearly be as effective as Teflon-coated wires.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2020
In arid yet foggy regions, fog harvesting is emerging as a promising approach to combat water scarcity. The mesh netting used by current fog harvesters suffers from inefficient drainage, which severely constrains the water collection efficiency. Recently, it was demonstrated that fog harps can significantly enhance water harvesting as the vertical wire array does not obstruct the drainage pathway.
View Article and Find Full Text PDFFog harvesting is a useful technique for obtaining fresh water in arid climates. The wire meshes currently utilized for fog harvesting suffer from dual constraints: coarse meshes cannot efficiently capture microscopic fog droplets, whereas fine meshes suffer from clogging issues. Here, we design and fabricate fog harvesters comprising an array of vertical wires, which we call "fog harps".
View Article and Find Full Text PDF