Publications by authors named "Brook Perry"

Article Synopsis
  • Neuronal activity during sleep, particularly hippocampal sharp-wave ripples (SWRs) and dentate spikes (DSs), is essential for stabilizing new memories.
  • This study shows that DSs synchronize neuronal spiking in different regions of the hippocampus, similarly to SWRs, but exhibit a more diverse and complex population coactivity structure.
  • Disrupting DSs impairs memory performance in tasks involving recognizing multiple objects, highlighting their crucial role in memory processing and hippocampal function.
View Article and Find Full Text PDF

The control of some physiological parameters, such as the heart rate, is known to have a role in cognitive and emotional processes. Cardiac changes are also linked to mental health issues and neurodegeneration. Thus, it is not surprising that many of the brain structures typically associated with cognition and emotion also comprise a circuit-the central automatic network-responsible for the modulation of cardiovascular output.

View Article and Find Full Text PDF

The thalamus and cortex are interconnected both functionally and anatomically and share a common developmental trajectory. Interactions between the mediodorsal thalamus (MD) and different parts of the prefrontal cortex are essential in cognitive processes, such as learning and adaptive decision-making. Cortico-thalamocortical interactions involving other dorsal thalamic nuclei, including the anterior thalamus and pulvinar, also influence these cognitive processes.

View Article and Find Full Text PDF

Cognitive flexibility, attributed to frontal cortex, is vital for navigating the complexities of everyday life. The mediodorsal thalamus (MD), interconnected to frontal cortex, may influence cognitive flexibility. Here, male rats performed an attentional set-shifting task measuring intradimensional (ID) and extradimensional (ED) shifts in sensory discriminations.

View Article and Find Full Text PDF

The mediodorsal thalamus (MD) and anterior thalamic nuclei (ATN) are two adjacent brain nodes that support our ability to make decisions, learn, update information, form and retrieve memories, and find our way around. The MD and PFC work in partnerships to support cognitive processes linked to successful learning and decision-making, while the ATN and extended hippocampal system together coordinate the encoding and retrieval of memories and successful spatial navigation. Yet, while these distinctions may appear to be segregated, both the MD and ATN together support our higher cognitive functions as they regulate and are influenced by interconnected fronto-temporal neural networks and subcortical inputs.

View Article and Find Full Text PDF

Background: Neuroscience studies with macaque monkeys may require cranial implants to stabilize the head or gain access to the brain for scientific purposes. Wound management that promotes healing after the cranial implant surgery in non-human primates can be difficult as it is not necessarily possible to cover the wound margins.

New Method: Here, we developed an easily modifiable head cap that protects the sutured skin margins after cranial implant surgery and contributes to wound healing.

View Article and Find Full Text PDF

Our memories are essential in our daily lives. The frontal and cingulate cortices, hippocampal system and medial temporal lobes are key brain regions. In addition, severe amnesia also occurs after damage or dysfunction to the anterior thalamic nuclei; this subcortical thalamic hub is interconnected to these key cortical memory structures.

View Article and Find Full Text PDF

The anterior thalamic nuclei (ATN), mammillary bodies and their interconnecting fiber tract, the mammillothalamic tract (MTT), are important components of an extended hippocampal circuit for episodic memory. In humans, damage to the MTT or ATN in many disorders is associated with severe anterograde amnesia and it is assumed that their influence on memory is functionally equivalent. The relative influence of these two structures on memory has not, however, been assessed explicitly.

View Article and Find Full Text PDF

Injury to the anterior thalamic nuclei (ATN) and their neural connections is the most consistent neuropathology associated with diencephalic amnesia. ATN lesions in rats produce memory impairments that support a key role for this region within an extended hippocampal system of complex overlapping neural connections. Environmental enrichment is a therapeutic tool that produces substantial, although incomplete, recovery of memory function after ATN lesions, even after the lesion-induced deficit has become established.

View Article and Find Full Text PDF