Publications by authors named "Bronwyn R Frame"

Expressing an RNAi construct in maize kernels that targets the gene for alpha-amylase in Aspergillus flavus resulted in suppression of alpha-amylase (amy1) gene expression and decreased fungal growth during in situ infection resulting in decreased aflatoxin production. Aspergillus flavus is a saprophytic fungus and pathogen to several important food and feed crops, including maize. Once the fungus colonizes lipid-rich seed tissues, it has the potential to produce toxic secondary metabolites, the most dangerous of which is aflatoxin.

View Article and Find Full Text PDF

We developed novel plasmids and T-DNA binary vectors that incorporate a modified and more useful form of the superpromoter. The superpromoter consists of a trimer of the octopine synthase transcriptional activating element affixed to the mannopine synthase2' (mas2') transcriptional activating element plus minimal promoter. We tested a superpromoter-beta-glucuronidaseA fusion gene in stably transformed tobacco (Nicotiana tabacum) and maize (Zea mays) plants and in transiently transformed maize Black Mexican Sweet protoplasts.

View Article and Find Full Text PDF

Agrobacterium tumefaciens-mediated transformation is an effective method for introducing genes into maize. In this chapter, we describe a detailed protocol for genetic transformation of the maize genotype Hi II. Our starting plant material is immature embryos cocultivated with an Agrobacterium strain carrying a standard binary vector.

View Article and Find Full Text PDF

Gene expression patterns were profiled during somatic embryogenesis in a regeneration-proficient maize hybrid line, Hi II, in an effort to identify genes that might be used as developmental markers or targets to optimize regeneration steps for recovering maize plants from tissue culture. Gene expression profiles were generated from embryogenic calli induced to undergo embryo maturation and germination. Over 1,000 genes in the 12,060 element arrays showed significant time variation during somatic embryo development.

View Article and Find Full Text PDF

Transformation technology as a research or breeding tool to improve maize is routinely used in most industrial and some specialized public laboratories. However, transformation of many inbred lines remains a challenging task, especially when using Agrobacterium tumefaciens as the delivery method. Here we report success in generating transgenic plants and progeny from three maize inbred lines using an Agrobacterium-mediated standard binary vector system to target maize immature embryos.

View Article and Find Full Text PDF

We have achieved routine transformation of maize (Zea mays) using an Agrobacterium tumefaciens standard binary (non-super binary) vector system. Immature zygotic embryos of the hybrid line Hi II were infected with A. tumefaciens strain EHA101 harboring a standard binary vector and cocultivated in the presence of 400 mg L-1 L-cysteine.

View Article and Find Full Text PDF