Structural and physiological changes in the female reproductive system underlie the origins of pregnancy in multiple vertebrate lineages. In mammals, the glandular portion of the lower reproductive tract has transformed into a structure specialized for supporting fetal development. These specializations range from relatively simple maternal nutrient provisioning in egg-laying monotremes to an elaborate suite of traits that support intimate maternal-fetal interactions in Eutherians.
View Article and Find Full Text PDFThere are many different forms of nutrient provision in viviparous (live-bearing) species. The formation of a placenta is one method where the placenta functions to transfer nutrients from mother to fetus (placentotrophy), to transfer waste from the fetus to the mother, and to perform respiratory gas exchange. Despite having the same overarching function, there are different types of placentation within placentotrophic vertebrates, and many morphological changes occur in the uterus during pregnancy to facilitate formation of the placenta.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFMammalian pregnancy involves remodelling of the uterine epithelium to enable placentation. In marsupials, such remodelling has probably played a key role in the transition from ancestral invasive placentation to non-invasive placentation. Identifying uterine alterations that are unique to marsupials with non-invasive placentation can thus elucidate mechanisms of marsupial placental evolution.
View Article and Find Full Text PDFCentral to understanding animal ecology is how prey cope with the interacting risks of starvation and predation. This trade-off is modulated by the energy requirements of prey, yet relatively few studies have incorporated physiological mechanisms for energy savings when considering the behavioural response of prey to predation risk. In our study, we aimed to determine individual variation in behaviour, resting metabolism, body temperature and response to 24-h starvation within a captive population of fat-tailed dunnarts (Sminthopsis crassicaudata; 15-g insectivorous marsupials), and then, using semi-outdoor enclosures, test whether foraging effort and thermal energetics are adjusted in response to manipulation of ground cover, which for small mammals can simulate predation risk.
View Article and Find Full Text PDFThe fluid that surrounds the embryo in the uterus contains important nourishing factors and secretions. To maintain the distinct microenvironment in the uterine lumen, the tight junctions between uterine epithelial cells are remodeled to decrease paracellular movement of molecules and solutes. Modifications to tight junctions between uterine epithelial cells is a common feature of pregnancy in eutherian mammals, regardless of placental type.
View Article and Find Full Text PDFThe uterine epithelium undergoes remodelling to become receptive to blastocyst implantation during pregnancy in a process known as the plasma membrane transformation. There are commonalities in ultrastructural changes to the epithelium, which, in eutherian, pregnancies are controlled by maternal hormones, progesterone and oestrogens. The aim of this study was to determine the effects that sex steroids have on the uterine epithelium in the fat-tailed dunnart Sminthopsis crassicaudata, the first such study in a marsupial.
View Article and Find Full Text PDFMammals exhibit similar changes in uterine epithelial morphology during early pregnancy despite having a diverse range of placental types. The uterine epithelium undergoes rapid morphological and molecular change ("plasma membrane transformation") during the early stages of pregnancy to allow attachment of the blastocyst. The domestic cat, Felis catus is in the order Carnivora; all species within the Carnivora studied so far develop an endotheliochorial placenta during pregnancy.
View Article and Find Full Text PDFAnat Rec (Hoboken)
November 2018
The uterine surface undergoes significant remodeling, termed the "plasma membrane transformation," during pregnancy to allow for implantation of the blastocyst and formation of the placenta in viviparous amniote vertebrates. Unlike other species within the superorder Euarchontoglires, which have a hemochorial (highly invasive) placenta, kangaroo rats (Dipodomys spp.) exhibit a less invasive endotheliochorial placenta.
View Article and Find Full Text PDFDiet regulation behavior can mediate the consequences of imbalanced diets for animal well-being, particularly for captive species that have little dietary choice. Dasyurids (carnivorous marsupials) are of conservation concern in Australia, and many species are in captive breeding programmes. However, their nutrient targets and dietary regulation behaviors are poorly understood, a limitation that may decrease the breeding success and well-being of captive animals.
View Article and Find Full Text PDFEarly pregnancy is a critical time for successful reproduction; up to half of human pregnancies fail before the development of the definitive chorioallantoic placenta. Unlike the situation in eutherian mammals, marsupial pregnancy is characterised by a long pre-implantation period prior to the development of the short-lived placenta, making them ideal models for study of the uterine environment promoting embryonic survival pre-implantation. Here we present a transcriptomic study of pre-implantation marsupial pregnancy, and identify differentially expressed genes in the Sminthopsis crassicaudata uterus involved in metabolism and biosynthesis, transport, immunity, tissue remodelling, and uterine receptivity.
View Article and Find Full Text PDFIn mammalian pregnancy, the uterus is remodeled to become receptive to embryonic implantation. Since non-invasive placentation in marsupials is likely derived from invasive placentation, and is underpinned by intra-uterine conflict between mother and embryo, species with non-invasive placentation may employ a variety of molecular mechanisms to maintain an intact uterine epithelium and to prevent embryonic invasion. Identifying such modifications to the uterine epithelium of marsupial species with non-invasive placentation is key to understanding how conflict is mediated during pregnancy in different mammalian groups.
View Article and Find Full Text PDFNormal development of the brain is dependent on the required amounts of thyroid hormones (THs) reaching specific regions of the brain during each stage of ontogeny. Many proteins are involved with regulation of TH bioavailability in the brain: the TH distributor protein transthyretin (TTR), TH transmembrane transporters (e.g.
View Article and Find Full Text PDFPregnancy in mammals requires remodeling of the uterus to become receptive to the implanting embryo. Remarkably similar morphological changes to the uterine epithelium occur in both eutherian and marsupial mammals, irrespective of placental type. Nevertheless, molecular differences in uterine remodeling indicate that the marsupial uterus employs maternal defences, including molecular reinforcement of the uterine epithelium, to regulate embryonic invasion.
View Article and Find Full Text PDFThe uterine luminal epithelium is the first site of contact between fetal and maternal tissues during therian pregnancy and must undergo specialised changes for implantation of the blastocyst to be successful. These changes, collectively termed the plasma membrane transformation (PMT), allow the blastocyst to attach to the uterine epithelium preceding the formation of a placenta. There are similarities in the morphological and molecular changes occurring in live-bearing eutherian species during the PMT studied so far.
View Article and Find Full Text PDFThe formation of a placenta is critical for successful mammalian pregnancy and requires remodelling of the uterine epithelium. In eutherian mammals, remodelling involves specific morphological changes that often correlate with the mode of embryonic attachment. Given the differences between marsupial and eutherian placentae, formation of a marsupial placenta may involve patterns of uterine remodelling that are different from those in eutherians.
View Article and Find Full Text PDFand (both Apicomplexa) are closely related cyst-forming coccidian parasites that differ significantly in their host ranges and ability to cause disease. Unlike eutherian mammals, Australian marsupials (metatherian mammals) have long been thought to be highly susceptible to toxoplasmosis and neosporosis because of their historical isolation from the parasites. In this study, the carnivorous fat-tailed dunnart () was used as a disease model to investigate the immune response and susceptibility to infection of an Australian marsupial to and The disease outcome was more severe in -infected dunnarts than in -infected dunnarts, as shown by the severity of clinical and histopathological features of disease and higher tissue parasite burdens in the tissues evaluated.
View Article and Find Full Text PDFMarsupials have a slow rate of development and this allows a detailed examination of thermoregulatory developmental changes and stages. We quantified the cooling rates of marsupial dunnarts (Sminthopsis crassicaudata) at 40-56 days (d) old, and torpor and basking behaviour in animals given the option to bask in four age groups from 60 to 150 d. The development of thermoregulation was a continuum, but was characterised by three major thermoregulatory stages: (1) at 40 d, animals were unable to maintain a constant high body temperature during short-term cold exposure; (2) at 60 d, animals could maintain a high T for the first part of the night at an ambient temperature of 15.
View Article and Find Full Text PDFShort-beaked echidnas (Tachyglossus aculeatus) are myrmecophages, or ant and termite insectivore specialists, and replicating their exact diet in captivity is problematic. Diets for captive animals often incorporate raw meat, eggs and cat food mixed together with water, and vitamin and mineral supplements. These diets have promoted a number of health problems in captive echidnas, such as gastritis, cystitis, gut impaction, obesity, and diarrhea.
View Article and Find Full Text PDFAlterations to the basal attachment points between the epithelium of the uterus and the underlying tissue in early pregnancy affect how easily the epithelium can be invaded by the implanting embryo. Attachment points- focal adhesions- disassemble to facilitate highly invasive implantation in rats, but species with less invasive implantation, including marsupials, may require different basal alterations for successful pregnancy. Here we used immunofluorescence microscopy and Western blotting to conduct the first study of basal plasma membrane dynamics in the uterus during marsupial pregnancy.
View Article and Find Full Text PDFExpressed coding sequences for interleukin-6 (IL-6) and interleukin-6 receptor α (IL-6R) were examined in five marsupial species. Full length expressed coding sequences for IL-6 and IL-6R were identified and characterized in the gray short-tailed opossum (Monodelphis domestica). For IL-6, ∼225 bp fragments of the mRNA sequence were identified in the red-tailed phascogale (Phascogale calura), kultarr (Antechinomys laniger), and stripe-faced dunnart (Sminthopsis macroura), while ∼563 bp fragments of mRNA encoding IL-6R were identified in the red-tailed phascogale, kultarr, stripe-face dunnart and fat-tailed dunnart (Sminthopsis crassicaudata).
View Article and Find Full Text PDFMammalian fur often shows agouti banding with a proximal dark band near the skin and a lighter distal band. We examined the function of both bands in relation to camouflage, thermal properties of pelts, and thermal energetics of dunnarts (Sminthopsis crassicaudata), which are known to use torpor and basking. Although the distal band of dunnart fur darkened with increasing latitude, which is important for camouflage, it did not affect the thermal properties and the length of the dark band and total hair length were not correlated.
View Article and Find Full Text PDFErythroblastic islands are multicellular clusters in which a central macrophage supports the development and maturation of red blood cell (erythroid) progenitors. These clusters play crucial roles in the pathogenesis observed in animal models of hematological disorders. The precise structure and function of erythroblastic islands is poorly understood.
View Article and Find Full Text PDFThyroid hormones (THs) are key regulators in the development of the vertebrate brain. Therefore, TH access to the developing brain needs to be strictly regulated. The brain barriers separate the central nervous system from the rest of the body and impose specific transport mechanisms on the exchange of molecules between the general circulation and the nervous system.
View Article and Find Full Text PDF