Publications by authors named "Bronwyn H Bleakley"

Cooperation among non-kin constitutes a conundrum for evolutionary biology. Theory suggests that non-kin cooperation can evolve if individuals differ consistently in their cooperative phenotypes and assort socially by these, such that cooperative individuals interact predominantly with one another. However, our knowledge of the role of cooperative phenotypes in the social structuring of real-world animal populations is minimal.

View Article and Find Full Text PDF

Models of cooperation among nonkin suggest that social assortment is important for the evolution of cooperation. Theory predicts that interacting phenotypes, whereby an individual's behavior depends on the behavior of its social partners, can drive such social assortment. We measured repeated indirect genetic effects (IGEs) during cooperative predator inspection in eight populations of Trinidadian guppies (Poecilia reticulata) that vary in their evolutionary history of predation.

View Article and Find Full Text PDF

Despite numerous and diverse theoretical models for the indirect benefits of polyandry, empirical support is mixed. One reason for the difficulty in detecting indirect benefits of polyandry may be that these are subtle and are mediated by environmental effects, such as maternal effects. Maternal effects may be especially important if females allocate resources to their offspring depending on the characteristics of their mating partners.

View Article and Find Full Text PDF

How and why cooperation evolves, particularly among nonrelatives, remains a major paradox for evolutionary biologists and behavioral ecologists. Although much attention has focused on fitness consequences associated with cooperating, relatively little is known about the second component of evolutionary change, the inheritance of cooperation or reciprocity. The genetics of behaviors that can only be expressed in the context of interactions are particularly difficult to describe because the relevant genes reside in multiple social partners.

View Article and Find Full Text PDF

Inbred lines are an important tool of genetic studies of all traits, including behavior. Independently derived strains of ornamental "designer" guppies are readily available and predicted to be inbred; however, little is known about actual levels of inbreeding in any of these strains or whether these lines differ in genetic traits that have not been under strong directional artificial selection. We genotyped five designer strains of guppies known to vary in their responses to predator cues and a wild reference population to determine whether designer strains show evidence of inbreeding and whether the strains differed from each other at five microsatellite loci.

View Article and Find Full Text PDF

Quantitative genetic studies frequently utilize inbred strains of animals as tools for partitioning the direct and indirect effects of genes from environmental effects in generating an observed phenotype, however, this approach is rarely applied to behavioral studies. Guppies, Poecilia reticulata, perform a set of anti-predator behaviors that may provide an ideal system to study how complex behavioral traits are generated. To assess the utility of ornamental guppies in quantitative genetics studies of behavior, we assayed five morphologically distinct strains of ornamental guppies for response to predator cues and for variation in response among strains.

View Article and Find Full Text PDF