Publications by authors named "Bronwen Cribb"

Background And Aims: Functional-structural plant (FSP) models provide insights into the complex interactions between plant architecture and underlying developmental mechanisms. However, parameter estimation of FSP models remains challenging. We therefore used pattern-oriented modelling (POM) to test whether parameterization of FSP models can be made more efficient, systematic and powerful.

View Article and Find Full Text PDF

True setae borne on the abdominal tergites of Ochrogaster lunifer Herrich-Schӓffer caterpillars are the agents of an irritating contact dermatitis, osteomyelitis, ophthalmia, and severe allergic reactions in humans, and are the cause of Equine Amnionitis and Fetal Loss in Australia. The setae are detached and readily dislodge from the integument whereby they disperse throughout the environment. To better understand the true setae of O.

View Article and Find Full Text PDF

The small hive beetle, Aethina tumida Murray (Coleoptera: Nitidulidae), is a pest of colonies of social bees, including the honeybee Apis mellifera L. (Hymenoptera: Apidae). We investigated A.

View Article and Find Full Text PDF

Background And Aims: Functional-structural plant (FSP) models have been widely used to understand the complex interactions between plant architecture and underlying developmental mechanisms. However, to obtain evidence that a model captures these mechanisms correctly, a clear distinction must be made between model outputs used for calibration and thus verification, and outputs used for validation. In pattern-oriented modelling (POM), multiple verification patterns are used as filters for rejecting unrealistic model structures and parameter combinations, while a second, independent set of patterns is used for validation.

View Article and Find Full Text PDF

Nature has produced many intriguing and spectacular surfaces at the micro- and nanoscales. These small surface decorations act for a singular or, in most cases, a range of functions. The minute landscape found on the lotus leaf is one such example, displaying antiwetting behavior and low adhesion with foreign particulate matter.

View Article and Find Full Text PDF

Insects exhibit a fascinating and diverse range of micro- and nanoarchitectures on their cuticle. Beyond the spectacular beauty of such minute structures lie surfaces evolutionarily modified to act as multifunctional interfaces that must contend with a hostile, challenging environment, driving adaption so that these can then become favorable. Numerous cuticular structures have been discovered this century; and of equal importance are the properties, functions, and potential applications that have been a key focus in many recent studies.

View Article and Find Full Text PDF

Computational modelling of mechanisms underlying processes in the real world can be of great value in understanding complex biological behaviours. Uptake in general biology and ecology has been rapid. However, it often requires specific data sets that are overly costly in time and resources to collect.

View Article and Find Full Text PDF

In this study, we have investigated the micro- and nano-structuring and contaminant adhesional forces of the outer skin layer of the ground dwelling gecko--Lucasium steindachneri. The lizard's skin displayed a high density of hairs with lengths up to 4 μm which were spherically capped with a radius of curvature typically less than 30 nm. The adhesion of artificial hydrophilic (silica) and hydrophobic (C18) spherical particles and natural pollen grains were measured by atomic force microscopy and demonstrated extremely low values comparable to those recorded on superhydrophobic insects.

View Article and Find Full Text PDF

Cnidarian venom research has lagged behind other toxinological fields due to technical difficulties in recovery of the complex venom from the microscopic nematocysts. Here we report a newly developed rapid, repeatable and cost effective technique of venom preparation, using ethanol to induce nematocyst discharge and to recover venom contents in one step. Our model species was the Australian box jellyfish (Chironex fleckeri), which has a notable impact on public health.

View Article and Find Full Text PDF

Venom represents one of the most extreme manifestations of a chemical arms race. Venoms are complex biochemical arsenals, often containing hundreds to thousands of unique protein toxins. Despite their utility for prey capture, venoms are energetically expensive commodities, and consequently it is hypothesized that venom complexity is inversely related to the capacity of a venomous animal to physically subdue prey.

View Article and Find Full Text PDF

Geckos, and specifically their feet, have attracted significant attention in recent times with the focus centred around their remarkable adhesional properties. Little attention however has been dedicated to the other remaining regions of the lizard body. In this paper we present preliminary investigations into a number of notable interfacial properties of the gecko skin focusing on solid and aqueous interactions.

View Article and Find Full Text PDF

Condensation resulting in the formation of water films or droplets is an unavoidable process on the cuticle or skin of many organisms. This process generally occurs under humid conditions when the temperature drops below the dew point. In this study, we have investigated dew conditions on the skin of the gecko Lucasium steindachneri.

View Article and Find Full Text PDF

The Heteroptera show a diversity of glands associated with the epidermis. They have multiple roles including the production of noxious scents. Here, we examine the cellular arrangement and cytoskeletal components of the scent glands of pentatomoid Heteroptera in three families, Pentatomidae (stink bugs), Tessaratomidae, and Scutelleridae (shield-backed bugs or jewel bugs).

View Article and Find Full Text PDF

Plants are sessile, so have evolved sensitive ways to detect attacking herbivores and sophisticated strategies to effectively defend themselves. Insect herbivory induces synthesis of the phytohormone jasmonic acid which activates downstream metabolic pathways for various chemical defences such as toxins and digestion inhibitors. Insects are also sophisticated animals, and many have coevolved physiological adaptations that negate this induced plant defence.

View Article and Find Full Text PDF

We provide insights into the secretory pathway of arthropod gland systems by comparing the royal jelly-producing hypopharyngeal glands and the venom-producing glands of the honeybee, Apis mellifera. These glands have different functions and different product release characteristics, but both belong to the class 3 types of insect glands, each being composed of two cells, a secretory cell and a microduct-forming cell. The hypopharyngeal secretory cells possess an extremely elongate tubular invagination that is filled with a cuticular structure, the end-apparatus, anchored against the cell membrane by a conspicuous series of actin rings.

View Article and Find Full Text PDF

We describe a novel cytoskeletal element within secretory cells of an arthropod gland system, the hypopharyngeal gland of the honeybee, Apis mellifera. The hypopharyngeal secretory cells are the source of royal jelly in nurse bees and enzymes in foragers. Each cell possesses an elongate invagination that is occupied by a tubular cuticular structure, the end-apparatus, that accumulates secretion and transfers it into a cuticular microtube and then into a collecting duct.

View Article and Find Full Text PDF

The adhesional properties of contaminating particles of scales of various lengths were investigated for a wide range of micro- and nanostructured insect wing cuticles. The contaminating particles consisted of artificial hydrophilic (silica) and spherical hydrophobic (C(18)) particles, and natural pollen grains. Insect wing cuticle architectures with an open micro-/nanostructure framework demonstrated topographies for minimising solid-solid and solid-liquid contact areas.

View Article and Find Full Text PDF

Many termite species typically fly during or shortly after rain periods. Local precipitation will ensure water will be present when establishing a new colony after the initial flight. Here we show how different species of termite utilise two distinct and contrasting strategies for optimising the success of the colonisation flight.

View Article and Find Full Text PDF

Non-wetting surfaces are imperative to the survival of terrestrial and semi-aquatic insects as they afford resistance to wetting by rain and other liquid surfaces that insects may encounter. Thus, there is an evolutionary pay-off for these insects to adopt hydrophobic technologies, especially on contacting surfaces such as legs and wings. The cranefly is a weak flier, with many species typically found in wet/moist environments where they lay eggs.

View Article and Find Full Text PDF

Additional weight due to contamination (water and/or contaminating particles) can potentially have a detrimental effect on the flight capabilities of large winged insects such as butterflies and dragonflies. Insects where the wing surface area-body mass ratio is very high will be even more susceptible to these effects. Water droplets tend to move spontaneously off the wing surface of these insects.

View Article and Find Full Text PDF

Water striders demonstrate an amazing talent which enables them to effectively "row" across water surfaces without immobilization. This ability has previously been ascribed to the wax-like chemistry of the small hairs (setae) found on the legs, and theoretically attributed to the nano/microscaled hierarchical architecture of individual seta using the Cassie-Baxter equations. Here we show experimentally the strength of the contribution of the seta surface architecture to superhydrophobicity by maintaining identical surface chemistry (thin and thick coating of the setae with polydimethylsiloxane).

View Article and Find Full Text PDF

Non-wetting surfaces help in the survival of terrestrial and semi-aquatic insects. Some insects encounter wetting by rain, through contact with water collected on foliage, or in ponds, rivers or streams. There is an evolutionary pay-off for such insects to adopt hydrophobic structuring especially on regions that contact water, such as legs or large surface areas such as wings.

View Article and Find Full Text PDF

The termite is an insect which is a weak flier, has a large wing area in relation to its body mass, and many species typically fly during rain or storm periods. Water droplets placed on these insects' wings will spontaneously roll off the surface. Here we show how the intricate hierarchical array design of these insect wings achieves anti-wetting properties with water bodies of various sizes by reducing contact area and thus adhesion.

View Article and Find Full Text PDF

Previously, the presence of metals in arthropod mandibles has been linked with harder cuticle, and in termites, a 20% increase in hardness has been found for mandibles containing major quantities of zinc. The current study utilises electron microscopy and energy-dispersive X-ray microanalysis to assess incidence and abundance of metals in all extant subfamilies of the Isoptera. The basal clades contain no zinc and little to no manganese in the cutting edge of the mandible cuticle, suggesting that these states are ancestral for termites.

View Article and Find Full Text PDF