Publications by authors named "Bronwen Connor"

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder traditionally characterized by the selective loss of medium spiny neurons in the basal ganglia. However, it has become apparent that white matter injury and oligodendrocyte dysfunction precede the degeneration of medium spiny neurons, garnering interest as a key pathogenic mechanism of HD. Oligodendrocytes are glial cells found within the central nervous system involved in the production of myelin and the myelination of axons.

View Article and Find Full Text PDF
Article Synopsis
  • - Huntington's disease (HD) is a genetic disorder that leads to the loss of specific neurons in the brain, causing motor dysfunction, and researchers are exploring cell replacement therapies to restore neuronal function.
  • - The study focuses on creating human lateral ganglionic eminence precursors (hiLGEPs) from adult human skin cells through a process called direct reprogramming, which was evaluated for its ability to differentiate into functional neurons.
  • - Results showed that hiLGEPs could be successfully produced and transplanted into rats with HD-like symptoms, demonstrating their potential to survive, integrate, and contribute to neuronal function over a 14-week period.
View Article and Find Full Text PDF

Introduction: Demyelination of the spinal cord is a prominent feature of multiple sclerosis (MS) and spinal cord injuries (SCI), where impaired neuronal communication between the brain and periphery has devastating consequences on neurological function. Demyelination precedes remyelination, an endogenous process in which oligodendrocyte precursor cells (OPCs) differentiate into mature, myelinating oligodendrocytes with the ability to restore the myelin sheath and reinstate functional nerve signaling. However, in MS or SCI, demyelination is more severe, persistent, and inhibitory to OPC-mediated remyelination, leading to a permanent loss of neuronal function.

View Article and Find Full Text PDF

Poloxamer-based hydrogels show promise to stabilise and sustain the delivery of growth factors in tissue engineering applications, such as following spinal cord injury. Typically, growth factors such as neurotrophin-3 (NT-3) degrade rapidly in solution. Similarly, poloxamer hydrogels also degrade readily and are, therefore, only capable of sustaining the release of a payload over a small number of days.

View Article and Find Full Text PDF

Cell reprogramming holds enormous potential to revolutionize our understanding of neurological and neurodevelopmental disorders, as well as enhance drug discovery and regenerative medicine. We have developed a direct cell reprogramming technology that allows us to generate lineage-specific neural cells. To extend our technology, we have investigated the incorporation of directly reprogrammed human lateral ganglionic eminence precursor cells (hiLGEPs) in a 3-dimensional (3D) matrix.

View Article and Find Full Text PDF

Rett Syndrome (RTT) is a severe neurodevelopmental disorder, afflicting 1 in 10,000 female births. It is caused by mutations in the X-linked (), which encodes for the global transcriptional regulator methyl CpG binding protein 2 (MeCP2). As human brain samples of RTT patients are scarce and cannot be used for downstream studies, there is a pressing need for in vitro modeling of pathological neuronal changes.

View Article and Find Full Text PDF

Introduction: The neurodevelopmental disorder fragile X syndrome (FXS) is the most common monogenic cause of intellectual disability associated with autism spectrum disorder. Inaccessibility to developing human brain cells is a major barrier to studying FXS. Direct-to-neural precursor reprogramming provides a unique platform to investigate the developmental profile of FXS-associated phenotypes throughout neural precursor and neuron generation, at a temporal resolution not afforded by post-mortem tissue and in a patient-specific context not represented in rodent models.

View Article and Find Full Text PDF

With the increase in aging populations around the world, the development of human cell models to study neurodegenerative disease is crucial. A major limitation in using induced pluripotent stem cell (hiPSC) technology to model diseases of aging is that reprogramming fibroblasts to a pluripotent stem cell state erases age-associated features. The resulting cells show behaviors of an embryonic stage exhibiting longer telomeres, reduced oxidative stress, and mitochondrial rejuvenation, as well as epigenetic modifications, loss of abnormal nuclear morphologies, and age-associated features.

View Article and Find Full Text PDF

Oligodendrocytes are a type of glial cells that produce a lipid-rich membrane called myelin. Myelin assembles into a sheath and lines neuronal axons in the brain and spinal cord to insulate them. This not only increases the speed and efficiency of nerve signal transduction but also protects the axons from damage and degradation, which could trigger neuronal cell death.

View Article and Find Full Text PDF

Electrically modulated delivery of proteins provides an avenue to target local tissues specifically and tune the dose to the application. This approach prolongs and enhances activity at the target site whilst reducing off-target effects associated with systemic drug delivery. The work presented here explores an electrically active composite material comprising of a biocompatible hydrogel, gelatin methacryloyl (GelMA) and a conducting polymer, poly(3,4-ethylenedioxythiophene), generating a conducting polymer hydrogel.

View Article and Find Full Text PDF

Organotypic brain slice cultures are a useful tool to study neurological disease as they provide a 3-dimensional system which more closely recapitulates the cytoarchitectural complexity than standard 2-dimensional cell cultures. Building on our previously developed rat brain slice culture protocol, we have extended our findings to develop excitotoxic lesion models by treatment of rat sagittal organotypic slices with AMPA or quinolinic acid (QA). We show that treatment of rat sagittal cortico-striatal organotypic slices with 8μM AMPA or 50μM QA causes striatal cell loss with a reduction in neuronal nuclei (NeuN)+ cells and an increase in ethidium homodimer-1 (EthD-1)+ dead cells compared to untreated slices.

View Article and Find Full Text PDF

Multiple sclerosis is a disease characterised by demyelination of axons in the central nervous system. The atypical antipsychotic drug clozapine has been shown to attenuate disease severity in experimental autoimmune encephalomyelitis (EAE), a mouse model that is useful for the study of multiple sclerosis. However, the mechanism of action by which clozapine reduces disease in EAE is poorly understood.

View Article and Find Full Text PDF

Three-dimensional bioprinting continues to advance as an attractive biofabrication technique to employ cell-laden hydrogel scaffolds in the creation of precise, user-defined constructs that can recapitulate the native tissue environment. Development and characterisation of new bioinks to expand the existing library helps to open avenues that can support a diversity of tissue engineering purposes and fulfil requirements in terms of both printability and supporting cell attachment. In this paper, we report the development and characterisation of agarose-gelatin (AG-Gel) hydrogel blends as a bioink for extrusion-based bioprinting.

View Article and Find Full Text PDF

The development of human cell-based platforms for disease modeling, drug discovery, and regenerative therapy relies on robust and practical methods to derive high yields of relevant neuronal subtypes. Direct reprogramming strategies have sought to provide a means of deriving human neurons that mitigate the low conversion efficiencies, and protracted timing of human embryonic stem cell and induced pluripotent stem cell-derived neuron specification in vitro. However, few studies have demonstrated the direct conversion of adult human fibroblasts into multipotent neural precursors with the capacity to differentiate into cortical neurons with high efficiency.

View Article and Find Full Text PDF

Huntington's disease (HD) is a neurodegenerative disorder characterized by the progressive decline of motor, cognitive, and psychiatric functions. HD results from an autosomal dominant mutation that causes a trinucleotide CAG repeat expansion and the production of mutant Huntingtin protein (mHTT). This results in the initial selective and progressive loss of medium spiny neurons (MSNs) in the striatum before progressing to involve the whole brain.

View Article and Find Full Text PDF

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by the progressive loss of striatal medium spiny neurons. Using a highly efficient protocol for direct reprogramming of adult human fibroblasts with chemically modified mRNA, we report the first generation of HD induced neural precursor cells (iNPs) expressing striatal lineage markers that differentiated into DARPP32+ neurons from individuals with adult-onset HD (41-57 CAG). While no transcriptional differences between normal and HD reprogrammed neurons were detected by NanoString nCounter analysis, a subpopulation of HD reprogrammed neurons contained ubiquitinated polyglutamine aggregates.

View Article and Find Full Text PDF

Objective: Because clozapine and risperidone have been shown to reduce neuroinflammation in humans and mice, the Clozapine and Risperidone in Progressive Multiple Sclerosis (CRISP) trial was conducted to determine whether clozapine and risperidone are suitable for progressive multiple sclerosis (pMS).

Methods: The CRISP trial (ACTRN12616000178448) was a blinded, randomised, placebo-controlled trial with three parallel arms (n=12/arm). Participants with pMS were randomised to clozapine (100-150 mg/day), risperidone (2.

View Article and Find Full Text PDF

Multiple sclerosis is a disease characterised by axonal demyelination in the central nervous system (CNS). The atypical antipsychotic drug clozapine attenuates experimental autoimmune encephalomyelitis (EAE), a mouse model used to study multiple sclerosis, but the precise mechanism is unknown and could include both peripheral and CNS-mediated effects. To better understand where clozapine exerts its protective effects, we investigated the tissue distribution and localisation of clozapine using matrix-assisted laser desorption ionization imaging mass spectrometry and liquid chromatography-mass spectrometry.

View Article and Find Full Text PDF

Huntington's disease (HD) is an inherited neurodegenerative disorder which is characterised by a triad of highly debilitating motor, cognitive, and psychiatric symptoms. While cell death occurs in many brain regions, GABAergic medium spiny neurons (MSNs) in the striatum experience preferential and extensive degeneration. Unlike most neurodegenerative disorders, HD is caused by a single genetic mutation resulting in a CAG repeat expansion and the production of a mutant Huntingtin protein (mHTT).

View Article and Find Full Text PDF

Background: Atypical antipsychotic agents, such as clozapine, are used to treat schizophrenia and other psychiatric disorders by a mechanism that is believed to involve modulating the immune system. Multiple sclerosis is an immune-mediated neurological disease, and recently, clozapine was shown to reduce disease severity in an animal model of MS, experimental autoimmune encephalomyelitis (EAE). However, the mode of action by which clozapine reduces disease in this model is poorly understood.

View Article and Find Full Text PDF

The atypical antipsychotic agent, clozapine, is used to treat a variety of neurological disorders including schizophrenia and Parkinson's disease and readily crosses the blood brain barrier to interact with a wide range of neuroreceptors including those for dopamine and serotonin. Recent work has shown that clozapine can reduce neuroinflammation in experimental autoimmune encephalomyelitis, a neuroinflammatory model of multiple sclerosis (MS) and mediates its effects in the central nervous system. To further characterise the protection provided by clozapine, the cuprizone model of demyelination was used to assess the effect of clozapine treatment on the cellular events surrounding demyelination and remyelination.

View Article and Find Full Text PDF

Direct reprogramming offers a unique approach by which to generate neural lineages for the study and treatment of neurological disorders. Our objective is to develop a clinically viable reprogramming strategy to generate neural precursor cells for the treatment of neurological disorders through cell replacement therapy. We initially developed a method for directly generating neural precursor cells (iNPs) from adult human fibroblasts by transient expression of the neural transcription factors, and using plasmid DNA.

View Article and Find Full Text PDF

The study and treatment of neurological disorders have been hampered by a lack of access to live, healthy, or disease-affected human neurons. The recent advances in the field of cell reprogramming offer exciting new possibilities for disease modeling, drug development, and cell-based therapies. Since the derivation of human embryonic stem cells (hESCs) and their differentiation into neurons, cell reprogramming technologies have built on these protocols to generate mature human neurons of disease-associated phenotypes from somatic cells.

View Article and Find Full Text PDF

Reprogramming technology holds great promise for the study and treatment of Parkinson's disease (PD) as patient-specific ventral midbrain dopamine (vmDA) neurons can be generated. This should facilitate the investigation of early changes occurring during PD pathogenesis, permitting the identification of new drug targets and providing a platform for drug screening. To date, most studies using reprogramming technology to study PD have employed induced pluripotent stem cells.

View Article and Find Full Text PDF

Receptor for advanced glycation end products (RAGE) is a multi-ligand receptor involved in the pathology of several progressive neurodegenerative disorders including Huntington's disease (HD). We previously showed that the expression of RAGE and its colocalization with ligands were increased in the striatum of HD patients, increasing with grade severity, and that the pattern of RAGE expression coincided with the medio-lateral pattern of neurodegeneration. However, the exact role of RAGE in HD remains elusive.

View Article and Find Full Text PDF