Introduction: Canine tibial alignment is determined by two-dimensional angular measurements, and tibial torsion is challenging. Aim of the study was the development and evaluation of a CT technique to measure canine tibial varus and torsion angles independent from positioning and truly three-dimensional.
Materials And Methods: A bone-centered 3D cartesian coordinate system was introduced into the CT-scans of canine tibiae and aligned with the anatomical planes of the bone based on osseous reference points.
Introduction: In small animal orthopedics, angular measurements in the canine femur are often applied in clinical patients with bone deformities and especially in complex and severe cases. Computed tomography (CT) has been shown to be more precise and accurate than two-dimensional radiography, and several methods are described. Measurement techniques evaluated in normal bones must prove accuracy in deformed bones in clinical settings.
View Article and Find Full Text PDFIntroduction: Measurement of torsional deformities and varus alignment in the canine femur is clinically and surgically important but difficult. Computed tomography (CT) generates true three-dimensional (3D) information and is used to overcome the limitations of radiography. The 3D CT images can be rotated freely, but the final view for angle measurements remains a subjective variable decision, especially in severe and complex angular and torsional deformities.
View Article and Find Full Text PDF