Unlike mammals, some nonmammalian species recruit Müller glia for retinal regeneration after injury. Identifying the underlying mechanisms may help to foresee regenerative medicine strategies. Using a model of retinitis pigmentosa, we found that Müller cells actively proliferate upon photoreceptor degeneration in old tadpoles but not in younger ones.
View Article and Find Full Text PDFMetazoan genomes are duplicated by the coordinated activation of clusters of replication origins at different times during S phase, but the underlying mechanisms of this temporal program remain unclear during early development. Rif1, a key replication timing factor, inhibits origin firing by recruiting protein phosphatase 1 (PP1) to chromatin counteracting S phase kinases. We have previously described that Rif1 depletion accelerates early Xenopus laevis embryonic cell cycles.
View Article and Find Full Text PDFOne presenilin gene (PSEN) is expressed in the sea urchin embryo, in the vegetal pole of the gastrula and then mainly in cilia cells located around the digestive system of the pluteus, as we recently have reported. PSEN expression must be accurately regulated for correct execution of these two steps of development. While investigating PSEN expression changes in embryos after expansion of endoderm with LiCl or of ectoderm with Zn2+ by whole-mount in situ hybridization (WISH) and quantitative PCR (qPCR), we detected natural antisense transcription of PSEN.
View Article and Find Full Text PDFIn multicellular eukaryotic organisms, the initiation of DNA replication occurs asynchronously throughout S-phase according to a regulated replication timing program. Here, using egg extracts, we showed that Yap (Yes-associated protein 1), a downstream effector of the Hippo signalling pathway, is required for the control of DNA replication dynamics. We found that Yap is recruited to chromatin at the start of DNA replication and identified Rif1, a major regulator of the DNA replication timing program, as a novel Yap binding protein.
View Article and Find Full Text PDFPresenilins (PSENs) are widely expressed across eukaryotes. Two PSENs are expressed in humans, where they play a crucial role in Alzheimer's disease (AD). Each PSEN can be part of the γ-secretase complex, which has multiple substrates, including Notch and amyloid-β precursor protein (AβPP) - the source of amyloid-β (Aβ) peptides that compose the senile plaques during AD.
View Article and Find Full Text PDFXenopus is an attractive model system for regeneration studies, as it exhibits an extraordinary regenerative capacity compared to mammals. It is commonly used to study body part regeneration following amputation, for instance of the limb, the tail, or the retina. Models with more subtle injuries are also needed for human degenerative disease modeling, allowing for the study of stem cell recruitment for the regeneration of a given cellular subtype.
View Article and Find Full Text PDFBackground: Amacrine interneurons that modulate synaptic plasticity between bipolar and ganglion cells constitute the most diverse cell type in the retina. Most are inhibitory neurons using either GABA or glycine as neurotransmitters. Although several transcription factors involved in amacrine cell fate determination have been identified, mechanisms underlying amacrine cell subtype specification remain to be further understood.
View Article and Find Full Text PDFMitotic arrest deficient 2 (Mad2) belongs to the spindle assembly checkpoint (SAC), a mechanism that blocks progression of the cell cycle until microtubule attachment to kinetochores is complete. It has been found to be involved in the resistance of cancer cells to "anti-mitotic" drugs such as paclitaxel. Mad2 controls meiotic progression, but its role during sea urchin development had never been investigated.
View Article and Find Full Text PDFThyroid hormones (TH) have been mainly associated with post-embryonic development and adult homeostasis but few studies report direct experimental evidence for TH function at very early phases of embryogenesis. We assessed the outcome of altered TH signaling on early embryogenesis using the amphibian Xenopus as a model system. Precocious exposure to the TH antagonist NH-3 or impaired thyroid receptor beta function led to severe malformations related to neurocristopathies.
View Article and Find Full Text PDFThe adult frog retina retains a reservoir of active neural stem cells that contribute to continuous eye growth throughout life. We found that Yap, a downstream effector of the Hippo pathway, is specifically expressed in these stem cells. Yap knock-down leads to an accelerated S-phase and an abnormal progression of DNA replication, a phenotype likely mediated by upregulation of c-Myc.
View Article and Find Full Text PDFLive imaging studies of the processes of demyelination and remyelination have so far been technically limited in mammals. We have thus generated a Xenopus laevis transgenic line allowing live imaging and conditional ablation of myelinating oligodendrocytes throughout the CNS. In these transgenic pMBP-eGFP-NTR tadpoles the myelin basic protein (MBP) regulatory sequences, specific to mature oligodendrocytes, are used to drive expression of an eGFP (enhanced green fluorescent protein) reporter fused to the Escherichia coli nitroreductase (NTR) selection enzyme.
View Article and Find Full Text PDFIn all species, fertilization triggers in the egg a rapid and transient increase of intracellular free calcium (Cai), but how this signal is generated following sperm and egg interaction has not been clearly characterised yet. In sea urchin, a signalling pathway involving tyrosine kinase and PLCγ has been proposed to be at the origin of the fertilization Cai signal. We report here that injection of src homology-2 (SH2) domains of the sea urchin PLCγ inhibits in a competitive manner the endogenous PLCγ, alters both the amplitude and duration of the fertilization Cai wave, but does not abrogate it.
View Article and Find Full Text PDFMycobacterium liflandii has been responsible for an emerging infection reported in the international trade of Western clawed frogs (Silurana tropicalis). This study shows that this mycolactone-producing Mycobacterium (MPM) has expanded its distribution range to France. The results of this study suggest that the use of in vitro fertilization to maintain genetic lines could be a temporary solution for valuable S.
View Article and Find Full Text PDFNeural stem cell research suffers from a lack of molecular markers to specifically assess stem or progenitor cell properties. The organization of the Xenopus ciliary marginal zone (CMZ) in the retina allows the spatial distinction of these two cell types: stem cells are confined to the most peripheral region, while progenitors are more central. Despite this clear advantage, very few genes specifically expressed in retinal stem cells have been discovered so far in this model.
View Article and Find Full Text PDFCell lines are useful tools to facilitate in vitro studies of many biological and molecular processes. We describe a new permanent fibroblast-type cell line obtained from disaggregated Xenopus tropicalis limb bud. The cell line population doubling time was ~24 h.
View Article and Find Full Text PDFWe report on the identification and characterization of XTERV1, a full-length endogenous retrovirus (ERV) within the genome of the western clawed frog (Xenopus tropicalis). XTERV1 contains all the basic genetic elements common to ERVs, including the classical 5'-long terminal repeat (LTR)-gag-pol-env-3'-LTR architecture, as well as conserved functional motifs inherent to each retroviral protein. Using phylogenetic analysis, we show that XTERV1 is related to the Epsilonretrovirus genus.
View Article and Find Full Text PDFThe precise localization of gene expression within the developing embryo, and how it changes over time, is one of the most important sources of information for elucidating gene function. As a searchable resource, this information has up until now been largely inaccessible to the Xenopus community. Here, we present a new database of Xenopus gene expression patterns, queryable by specific location or region in the embryo.
View Article and Find Full Text PDFStable integration of foreign DNA into the frog genome has been the purpose of several studies aimed at generating transgenic animals or producing mutations of endogenous genes. Inserting DNA into a host genome can be achieved in a number of ways. In Xenopus, different strategies have been developed which exhibit specific molecular and technical features.
View Article and Find Full Text PDFThe olig genes form a small subfamily of basic helix-loop-helix transcription factors. They were discovered in 2000 as genes required for oligodendrocyte lineage specification. Since then, olig genes have been identified in various vertebrate species and corresponding sequences accumulated within genomic databases.
View Article and Find Full Text PDFIn vertebrates, the actin-binding proteins tropomyosins are encoded by four distinct genes that are expressed in a complex pattern during development and muscle differentiation. In this study, we have characterized the transcriptional machinery of the alpha-tropomyosin (alpha-Tm) gene in muscle cells. Promoter analysis revealed that a 284-bp proximal promoter region of the Xenopus laevis alpha-Tm gene is sufficient for maximal activity in the three muscle cell types.
View Article and Find Full Text PDFSurvivin is a member of the inhibitor of apoptosis proteins (IAP) family. These proteins contain one to three zinc-binding motifs termed bacculoviral IAP-binding repeats (BIRs). Survivin contains a single BIR motif.
View Article and Find Full Text PDFThe ecotropic viral integration site 1 (Evi1) and related MEL1 (MDS1/Evi1-like gene 1) genes are zinc finger oncogenic transcription factors involved in myeloid leukaemia. Here, we show that in Xenopus, Evi1 and MEL1 have partially overlapping restricted embryonic expression profiles. Within the pronephros, Evi1 and MEL1 are sequentially expressed within the distal tubule and duct compartments, Evi1 transcription being detected prior to any sign of pronephric morphogenesis.
View Article and Find Full Text PDFWe have performed an exhaustive characterization of the large Maf family of basic leucine zipper transcription factors in vertebrates using the genome data available, and studied the embryonic expression patterns of the four paralogous genes thus identified in Xenopus tropicalis. Our phylogenetic analysis shows that, in osteichthyans, the large Maf family contains four orthology classes, MafA, MafB, c-Maf and Nrl, which have emerged in vertebrates prior to the split between actinopterygians and sarcopterygians. It leads to the unambiguous assignment of the Xenopus laevis XLmaf gene, previously considered a MafA orthologue, to the Nrl class, the identification of the amphibian MafA and c-Maf orthologues and the identification of the zebrafish Nrl gene.
View Article and Find Full Text PDF