Pre-pedestal generation is observed in a 0.35-PW laser front end coming from a post-pedestal via instantaneous gain and pump depletion in an optical parametric amplifier during chirped-pulse amplification. Generalized simulations show how this effect arises from gain nonlinearity and applies to all optical parametric chirped-pulse-amplification systems with a post-pedestal.
View Article and Find Full Text PDFOptical parametric chirped-pulse amplification (OPCPA) using high-energy Nd:glass lasers has the potential to produce ultra-intense pulses (>10 W/cm). We report on the performance of the final high-efficiency amplifier in an OPCPA system based on large-aperture (63 × 63-mm) partially deuterated potassium dihydrogen phosphate (DKDP) crystals. The seed beam (180-nm bandwidth, 110 mJ) was provided by the preceding OPCPA stages.
View Article and Find Full Text PDFOptical parametric chirped-pulse-amplification produces two broadband pulses, a signal and an idler, that can both provide peak powers >100 GW. In most cases the signal is used, but compressing the longer-wavelength idler opens up opportunities for experiments where the driving laser wavelength is a key parameter. This paper will describe several subsystems that were added to a petawatt class, Multi-Terawatt optical parametric amplifier line (MTW-OPAL) at the Laboratory for Laser Energetics to address two long-standing issues introduced by the use of the idler, angular dispersion, and spectral phase reversal.
View Article and Find Full Text PDFWe used COMSOL Multiphysics to design a prototype actively cooled "flow-cell" substrate targeted at high-average-power applications, fabricated the prototype from cordierite ceramic, and tested the substrate under load in our thermal loading test stand. Sub-aperture testing revealed average-power handling up to 3.88-W/cm absorbed power density, in excellent agreement with model predictions.
View Article and Find Full Text PDFOptical parametric chirped-pulse amplification (OPCPA) is an effective way to generate ultrashort pulses that has been used extensively for a variety of applications requiring high peak intensities. Precise control and measurement of a system's spectral and spatial phases are required for Fourier-transform-limited pulse compression and diffraction-limited focusing. Phase accumulated during optical parametric amplification (OPA) can degrade the compressibility and focusability of the pulse, reducing peak intensity.
View Article and Find Full Text PDFWe experimentally demonstrate how divided-pulse nonlinear compression can be used to improve the temporal contrast of a laser pulse train while simultaneously temporally compressing the pulses. We measure a contrast improvement of almost four orders of magnitude on a nanosecond time scale and temporally compress the pulses from 1.2 ps to 187 fs.
View Article and Find Full Text PDFWe present a theoretical and experimental analysis of the signal phase introduced by the pump-beam wavefront and spatial profile during optical parametric amplification (OPA) process. The theory predicts the appearance of an additional wavefront in the amplified signal beam that is proportional to the spatial derivative of the pump-beam wavefront. The effect of the pump-beam profile on the signal-beam wavefront is also investigated.
View Article and Find Full Text PDFWe demonstrate how pulse energy in hollow-core fiber can be scaled beyond gas-ionization limitations using divided-pulse nonlinear compression. With one pulse, ionization limits our fiber's output pulse energy to 2.7 mJ at an input of 4 mJ.
View Article and Find Full Text PDFThe multiterawatt (MTW) laser, built initially as the prototype front end for a petawatt laser system, is a 1053 nm hybrid system with gain from optical parametric chirped-pulse amplification (OPCPA) and Nd:glass. Compressors and target chambers were added, making MTW a complete laser facility (output energy up to 120 J, pulse duration from 20 fs to 2.8 ns) for studying high-energy-density physics and developing short-pulse laser technologies and target diagnostics.
View Article and Find Full Text PDFIn optical parametric chirped-pulse amplification (OPCPA), pump temporal intensity modulation is transferred to the chirped-signal spectrum via instantaneous parametric gain and results in contrast degradation of the recompressed signal. We investigate, for the first time to our knowledge, the pump-to-signal noise transfer in a two-stage ultra-broadband OPCPA pumped by a single laser and show the dependence of pump-induced signal noise, characterized both before and after pulse compression, on the difference in pump-seed delay in the two stages. We demonstrate an up-to-15-dB reduction of the pump-induced contrast degradation via pump-seed delay optimization.
View Article and Find Full Text PDFHigh-energy deep ultraviolet (UV) sources are required for high-density plasma diagnostics. The fifth-harmonic generation of large-aperture neodymium lasers in ammonium dihydrogen phosphate (ADP) can significantly increase UV energies due to the availability of large ADP crystals. Noncritical phase matching in ADP for (ω + 4ω) was achieved by cooling a 65 × 65-mm crystal in a two-chamber cryostat to 200 K.
View Article and Find Full Text PDFOpt Express
October 2020
We simulate Kerr and plasma nonlinearities in a hollow-core fiber to show how plasma effects degrade the output pulse. Our simulations predict the plasma effects can be avoided entirely by implementing divided-pulse nonlinear compression. In divided-pulse nonlinear compression, a high-energy pulse is divided into multiple low-energy pulses, which are spectrally broadened in the hollow-core fiber and then recombined into a high-energy, spectrally broadened pulse.
View Article and Find Full Text PDFWe describe the design and alignment of an unobscured reflective image relay for use in an ultra-broadband half-petawatt laser system in development at the University of Rochester's Laboratory for Laser Energetics. The design consists of four spherical mirrors in an unobscured configuration. We show the theoretical basis for such a four-mirror design using first-order optical matrix methods and nodal aberration theory.
View Article and Find Full Text PDFLarge diameter, flying focus driven ionization waves of arbitrary velocity (IWAV's) were produced by a defocused laser beam in a hydrogen gas jet, and their spatial and temporal electron density characteristics were measured using a novel, spectrally resolved interferometry diagnostic. A simple analytic model predicts the effects of power spectrum non-uniformity on the IWAV trajectory and transverse profile. This model compares well with the measured data and suggests that spectral shaping can be used to customize IWAV behavior and increase controlled propagation of ionization fronts for plasma-photonics applications.
View Article and Find Full Text PDFThe Laser Shock Station in the Dynamic Compression Sector (DCS) [Advanced Photon Source (APS), Argonne National Laboratory] links a laser-driven shock compression platform with high energy x-ray pulses from the APS to achieve in situ, time-resolved x-ray measurements (diffraction and imaging) in materials subjected to well-characterized, high stress, short duration shock waves. This station and the other DCS experimental stations provide a unique and versatile facility to study condensed state phenomena subjected to shocks with a wide range of amplitudes (to above ∼350 GPa) and time-durations (∼10 ns-1 µs). The Laser Shock Station uses a 100 J, 5-17 ns, 351 nm frequency tripled Nd:glass laser with programmable pulse shaping and focal profile smoothing for maximum precision.
View Article and Find Full Text PDFThe Dynamic Compression Sector (DCS) laser is a 100-J ultraviolet Nd:glass system designed and built by the Laboratory for Laser Energetics for experimental research at the DCS located at the Advanced Photon Source (Argonne National Laboratory). Its purpose is to serve as a shock driver to study materials under extreme dynamic pressures. It was designed to deposit energy within a uniformly illuminated 500-μm spot on target, with additional optics provided to implement spot sizes of 250 and 1000 μm.
View Article and Find Full Text PDFWe present what is, to our knowledge, the first measurement of temperature distributions in a nonlinear optic resulting from absorption in a localized surface defect. These measurements were performed on principal cut samples of lithium triborate with damage spots centered on their front surfaces, pumped by a kW-scale continuous-wave laser. The changes in optical-path length associated with this heating were measured with a Mach-Zehnder interferometer, from which the temperature distribution could be inferred.
View Article and Find Full Text PDFThe effects of pulse compressor grating misalignment on pulse duration and focusability are simulated for chirped-pulse-amplification systems of varying bandwidths, beam sizes, groove densities, and incident angles. Tilt-alignment tolerances are specified based on a 2 drop in focused intensity, illustrating how tolerances scale with bandwidth and compressor beam size, which scales with energy when transformed via known grating damage thresholds. Grating-alignment tolerance scaling with grating groove density and incident/diffracted angles is investigated and applied to compressor design.
View Article and Find Full Text PDFWe derive the relationship between Coddington's equations and the Gaussian curvature for a stigmatic reflective imaging system. This relationship allows parameterizing off-axis conic optical systems using traditional first-order optics by considering the effective curvature at the center of the off-axis sections. Specifically, we demonstrate parameterizing the system requirements of a 2× achromatic image relay for a terawatt laser system.
View Article and Find Full Text PDFFlying focus is a technique that uses a chirped laser beam focused by a highly chromatic lens to produce an extended focal region within which the peak laser intensity can propagate at any velocity. When that intensity is high enough to ionize a background gas, an ionization wave will track the intensity isosurface corresponding to the ionization threshold. We report on the demonstration of such ionization waves of arbitrary velocity.
View Article and Find Full Text PDFThe fifth harmonic of a pulsed Nd:YLF laser has been realized in a cascade of nonlinear crystals with a record efficiency of 30%. Cesium lithium borate is used in a Type-I configuration for sum-frequency mixing of 1053 and 266 nm, producing 211 nm pulses. Flat-topped beam profiles and pulse shapes optimize efficiency.
View Article and Find Full Text PDFTwo-dimensional chromatic aberrations are characterized by a single-shot scheme based on a simultaneous measurement of chromatically diversified focal spots. The chromatic diversity is introduced by a 2-D grating with holographic defocus terms. The chromatic aberrations in the beam are either subtracted or added by the additional known chromatic aberrations in the grating, depending on the diffraction order.
View Article and Find Full Text PDFTalbot-Lau x-ray interferometry uses incoherent x-ray sources to measure refraction index changes in matter. These measurements can provide accurate electron density mapping through phase retrieval. An adaptation of the interferometer has been developed in order to meet the specific requirements of high-energy density experiments.
View Article and Find Full Text PDFWe describe a parametric-amplification-based front end for seeding high-energy Nd:glass laser systems. The front end delivers up to 200 mJ by parametric amplification in 2.5-ns flat-in-time pulses tunable over more than 15 nm.
View Article and Find Full Text PDFAn ultrafast, high-average-power, extended-cavity, femtosecond BiBO optical parametric oscillator was constructed as a test bed for investigating the scalability of infrared parametric devices. Despite the high pulse energies achieved by this system, the reduction in slope efficiency near the maximum-available pump power prompted the investigation of thermal effects in the crystal during operation. The local heating effects in the crystal were used to determine the impact on both phase matching and thermal lensing to understand limitations that must be overcome to achieve microjoule-level pulse energies at high repetition rates.
View Article and Find Full Text PDF