I-wave periodicity repetitive paired-pulse transcranial magnetic stimulation (iTMS) can modify acquisition of a novel motor skill, but the associated neurophysiological effects remain unclear. The current study therefore used combined TMS-electroencephalography (TMS-EEG) to investigate the neurophysiological effects of iTMS on subsequent visuomotor training (VT). Sixteen young adults (26.
View Article and Find Full Text PDFTranscranial magnetic stimulation (TMS) over primary motor cortex (M1) recruits indirect (I) waves that can be modulated by repetitive paired-pulse TMS (rppTMS). The purpose of this study was to examine the effect of rppTMS on M1 excitability and visuomotor skill acquisition in young and older adults. A total of 37 healthy adults (22 young, 18-32 yr; 15 older, 60-79 yr) participated in a study that involved rppTMS at early (1.
View Article and Find Full Text PDFObjectives: Repetitive paired-pulse transcranial magnetic stimulation (iTMS) at indirect (I) wave intervals increases motor-evoked potentials (MEPs) produced by transcranial magnetic stimulation (TMS) to primary motor cortex (M1). However, the effects of iTMS at early and late intervals on the plasticity of specific I-wave circuits remain unclear. This study therefore aimed to assess how the timing of iTMS influences intracortical excitability within early and late I-wave circuits.
View Article and Find Full Text PDFJ Appl Physiol (1985)
October 2022
Previous research using transcranial magnetic stimulation (TMS) has shown that plasticity within primary motor cortex (M1) is greater in people who undertake regular exercise, and a single session of aerobic exercise can increase M1 plasticity in untrained participants. This study aimed to examine the effect of an acute bout of exercise on M1 plasticity in endurance-trained (cyclists) and untrained individuals. Fourteen endurance-trained cyclists (mean ± SD; 23 ± 3.
View Article and Find Full Text PDFPurpose: Studies with transcranial magnetic stimulation (TMS) show that both acute and long-term exercise can influence TMS-induced plasticity within primary motor cortex (M1). However, it remains unclear how regular exercise influences skill training-induced M1 plasticity and motor skill acquisition. This study aimed to investigate whether skill training-induced plasticity and motor skill learning is modified in endurance-trained cyclists.
View Article and Find Full Text PDFIt is commonly accepted that the brains capacity to change, known as plasticity, declines into old age. Recent studies have used a variety of non-invasive brain stimulation (NIBS) techniques to examine this age-related decline in plasticity in the primary motor cortex (M1), but the effects seem inconsistent and difficult to unravel. The purpose of this review is to provide an update on studies that have used different NIBS techniques to assess M1 plasticity with advancing age and offer some new perspective on NIBS strategies to boost plasticity in the ageing brain.
View Article and Find Full Text PDFThe late indirect (I)-waves recruited by transcranial magnetic stimulation (TMS) over primary motor cortex (M1) can be modulated using I-wave periodicity repetitive TMS (iTMS). The purpose of this study was to determine if the response to iTMS is influenced by different interstimulus intervals (ISIs) targeting late I-waves, and whether these responses were associated with individual variations in intracortical excitability. Seventeen young (27.
View Article and Find Full Text PDFIntroduction: Previous research with transcranial magnetic stimulation (TMS) indicates that coil orientation (TMS current direction) and muscle activation state (rest or active) modify corticospinal and intracortical excitability of upper limb muscles. However, the extent to which these factors influence corticospinal and intracortical excitability of lower limb muscles is unknown. This study aimed to examine how variations in coil orientation and muscle activation affect corticospinal and intracortical excitability of tibialis anterior (TA), a lower leg muscle.
View Article and Find Full Text PDFBackground: Recent work suggests that the function of intracortical interneurons activated by transcranial magnetic stimulation (TMS) is modified in older adults, with the circuits generating short-interval intracortical facilitation (SICF) at longer intervals appearing to be particularly affected.
Objective: To use SICF to quantify age-related changes in the excitability and recruitment of late synaptic inputs to corticospinal neurons, and investigate if changes within these circuits contribute to altered motor performance in older adults.
Methods: SICF was recorded with 3 different conditioning intensities in 23 young (23.
Transcranial magnetic stimulation may represent an effective means for improving motor function in the elderly. The aim of this study was therefore to investigate the effects of paired associative stimulation (PAS; a plasticity-inducing transcranial magnetic stimulation paradigm) on acquisition of a novel visuomotor task in young and older adults. Fourteen young (20.
View Article and Find Full Text PDF