Directed enzyme-prodrug therapies used for targeted drug delivery require prodrugs that are chemically stable and processed efficiently by the activating enzyme. We recently reported the development of AMS-6-Glu (), a glutamate-masked version of the cytotoxic natural product 5'--sulfamoyladenosine (AMS, ) that can be activated by carboxypeptidase G2 (CPG2). Herein, we report the development of a second-generation prodrug, AMS-5'-PHOBA-Glu (), that undergoes cleavage by CPG2 with >160-fold higher efficiency.
View Article and Find Full Text PDFGenetically engineered, cytotoxic, adoptively transferred T cells localize to antigen-positive cancer cells inside patients, but tumor heterogeneity and multiple immune escape mechanisms have prevented the eradication of most solid tumor types. More effective, multifunctional engineered T cells are in development to overcome the barriers to the treatment of solid tumors, but the interactions of these highly modified cells with the host are poorly understood. We previously engineered prodrug-activating enzymatic functions into chimeric antigen receptor (CAR) T cells, endowing them with a killing mechanism orthogonal to conventional T-cell cytotoxicity.
View Article and Find Full Text PDFGenetically engineered, cytotoxic, adoptive T cells localize to antigen positive cancer cells inside patients, but tumor heterogeneity and multiple immune escape mechanisms have prevented the eradication of most solid tumor types. More effective, multifunctional engineered T cells are in development to overcome the barriers to the treatment of solid tumors, but the interactions of these highly modified cells with the host are poorly understood. We previously engineered prodrug-activating enzymatic functions into chimeric antigen receptor (CAR) T cells, endowing them with an orthogonal killing mechanism to conventional T-cell cytotoxicity.
View Article and Find Full Text PDFEponemycin is an α,β-epoxyketone natural product that inhibits the proteasome covalent interaction of the epoxyketone warhead with catalytic N-terminal threonine residues. The epoxyketone warhead is biosynthesized from a β-ketoacid substrate by EpnF, a recently identified flavin-dependent acyl-CoA dehydrogenase-like enyzme. Herein, we report biochemical characterization of EpnF kinetics and substrate scope using a series of synthetic β-ketoacid substrates.
View Article and Find Full Text PDFChimeric antigen receptor (CAR)-T cells represent a major breakthrough in cancer therapy, wherein a patient's own T cells are engineered to recognize a tumor antigen, resulting in activation of a local cytotoxic immune response. However, CAR-T cell therapies are currently limited to the treatment of B cell cancers and their effectiveness is hindered by resistance from antigen-negative tumor cells, immunosuppression in the tumor microenvironment, eventual exhaustion of T cell immunologic functions and frequent severe toxicities. To overcome these problems, we have developed a novel class of CAR-T cells engineered to express an enzyme that activates a systemically administered small-molecule prodrug in situ at a tumor site.
View Article and Find Full Text PDFBackground: Melanoma lacks validated blood-based biomarkers for monitoring and predicting treatment efficacy. Cell-free circulating tumour DNA (ctDNA) is a promising biomarker; however, various detection methods have been used, and, to date, no large studies have examined the association between serial changes in ctDNA and survival after BRAF, MEK, or BRAF plus MEK inhibitor therapy. We aimed to evaluate whether baseline ctDNA concentrations and kinetics could predict survival outcomes.
View Article and Find Full Text PDFMutational heterogeneity can contribute to therapeutic resistance in solid cancers. In melanoma, the frequencies of intertumoral and intratumoral heterogeneity are controversial. We examined mutational heterogeneity within individual patients with melanoma using multiplatform analysis of commonly mutated driver and nonpassenger genes.
View Article and Find Full Text PDFThe detection of cell-free, circulating tumor DNA (ctDNA) in the blood of patients with solid tumors is often referred to as "liquid biopsy." ctDNA is particularly attractive as a candidate biomarker in the blood. It is relatively stable after blood collection, can be easily purified, and can be quantitatively measured with high sensitivity and specificity using advanced technologies.
View Article and Find Full Text PDFDetecting mutations in the plasma of patients with solid tumors is becoming a valuable method of diagnosing and monitoring cancer. The TERT promoter is mutated at high frequencies in multiple cancer types, most commonly at positions -124 and -146 (designated C228T and C250T, respectively). Detection of these mutations has been challenging because of the high GC content of this region (approximately 80%).
View Article and Find Full Text PDF