Publications by authors named "Brodbelt J"

Charge detection mass spectrometry (CDMS) allows direct mass measurement of heterogeneous samples by simultaneously determining the charge state and the mass-to-charge ratio (/) of individual ions, unlike conventional MS methods that use large ensembles of ions. CDMS typically requires long acquisition times and the collection of thousands of spectra, each containing tens to hundreds of ions, to generate sufficient ion statistics, making it difficult to interface with the time scales of online separation techniques such as ion mobility. Here, we demonstrate the application of Fourier transform multiplexing and drift tube ion mobility joined with Orbitrap-based CDMS for the analysis of multimeric protein complexes.

View Article and Find Full Text PDF

Mass spectrometry (MS) has become a critical tool in the characterization of covalently modified nucleic acids. Well-developed bottom-up approaches, where nucleic acids are digested with an endonuclease and the resulting oligonucleotides are separated before MS and MS/MS analysis, provide substantial insight into modified nucleotides in biological and synthetic nucleic. Top-down MS presents an alternative approach where the entire nucleic acid molecule is introduced to the mass spectrometer intact and then fragmented by MS/MS.

View Article and Find Full Text PDF

Proteo-SAFARI is a shiny application for fragment assignment by relative isotopes, an R-based software application designed for identification of protein fragment ions directly in the / domain. This program provides an open-source, user-friendly application for identification of fragment ions from a candidate protein sequence with support for custom covalent modifications and various visualizations of identified fragments. Additionally, Proteo-SAFARI includes a nonnegative least-squares fitting approach to determine the contributions of various hydrogen shifted fragment ions ( + 1, + 1, - 1, - 2) observed in UVPD mass spectra which exhibit overlapping isotopic distributions.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on understanding the complex patterns of -glycosylation in mucin domain proteins, which are important in diseases like cancer.
  • Researchers are developing new methods to analyze these glycoproteins due to the difficulties presented by their diverse glycosylation structures.
  • They combine the use of a targeted protease and ultraviolet photodissociation mass spectrometry to identify and map glycoforms of proteins like TIM-1, MUC-1, and MUC-16, further revealing glycosylation trends in these proteins.
View Article and Find Full Text PDF

Owing to the role of the 20S proteasome in a wide spectrum of pathologies, including neurodegenerative disorders, proteasome-associated autoinflammatory syndromes (PRAAS), and cardiovascular diseases, understanding how its structure and composition contribute to dysfunction is crucial. As a 735 kDa protein assembly, the 20S proteasome facilitates normal cellular proteostasis by degrading oxidized and misfolded proteins. Declined proteasomal activity, which can be attributed to perturbations in the structural integrity of the 20S proteasome, is considered one of the main contributors to multiple proteasome-related diseases.

View Article and Find Full Text PDF

Recent progress in top-down mass spectrometry analysis of progressively larger nucleic acids has enabled in-depth characterization of intact, modified RNA molecules. Development of methods for desalting and MS/MS fragmentation allows rapid acquisition of high-quality top-down MS/MS spectra of nucleic acids up to 100 nt, which has spurred the need for development of software approaches to identify and validate nucleic acid fragment ions. We have implemented an R-based approach to aid in analysis of MS/MS spectra of nucleic acids based on fragment ions observed directly in the / domain.

View Article and Find Full Text PDF

Ultraviolet photodissociation (UVPD) has been shown to be a versatile ion activation strategy for the characterization of peptides and intact proteins among other classes of biological molecules. Combining the high-performance mass spectrometry (MS/MS) capabilities of UVPD with the high-resolution separation of trapped ion mobility spectrometry (TIMS) presents an opportunity for enhanced structural elucidation of biological molecules. In the present work, we integrate a 193 nm excimer laser in a TIMS-time-of-flight (TIMS-TOF) mass spectrometer for UVPD in the collision cell and use it for the analysis of several mass-mobility-selected species of ubiquitin and myoglobin.

View Article and Find Full Text PDF
Article Synopsis
  • The main protease (M) of SARS-CoV-2 is crucial for the virus's maturation and is the target of the COVID-19 treatment Paxlovid, but there's a pressing need to find new inhibitors due to potential viral resistance.
  • The study utilized advanced techniques like native mass spectrometry and UV photodissociation to analyze the structure of M and how it interacts with potential covalent inhibitors.
  • Results indicated that certain inhibitors enhance the stability of M by creating dimeric complexes with higher melting temperatures and lower charge states, providing valuable insights into how these inhibitors work.
View Article and Find Full Text PDF

The Gram-negative outer membrane protects bacterial cells from environmental toxins such as antibiotics. The outer membrane lipid bilayer is asymmetric; while glycerophospholipids compose the periplasmic facing leaflet, the surface layer is enriched with phosphate-containing lipopolysaccharides. The anionic phosphates that decorate the cell surface promote electrostatic interactions with cationic antimicrobial peptides such as colistin, allowing them to penetrate the bilayer, form pores, and lyse the cell.

View Article and Find Full Text PDF

Protein glycosylation is implicated in a wide array of diseases, yet glycoprotein analysis remains elusive owing to the extreme heterogeneity of glycans, including microheterogeneity of some of the glycosites (amino acid residues). Various mass spectrometry (MS) strategies have proven tremendously successful for localizing and identifying glycans, typically utilizing a bottom-up workflow in which glycoproteins are digested to create glycopeptides to facilitate analysis. An emerging alternative is top-down MS that aims to characterize intact glycoproteins to allow precise identification and localization of glycans.

View Article and Find Full Text PDF

Here we used native mass spectrometry (native MS) to probe a SARS-CoV protease, PLpro, which plays critical roles in coronavirus disease by affecting viral protein production and antagonizing host antiviral responses. Ultraviolet photodissociation (UVPD) and variable temperature electrospray ionization (vT ESI) were used to localize binding sites of PLpro inhibitors and revealed the stabilizing effects of inhibitors on protein tertiary structure. We compared PLpro from SARS-CoV-1 and SARS-CoV-2 in terms of inhibitor and ISG15 interactions to discern possible differences in protease function.

View Article and Find Full Text PDF

Owing to its ability to generate extensive fragmentation of proteins, ultraviolet photodissociation (UVPD) mass spectrometry (MS) has emerged as a versatile ion activation technique for the structural characterization of native proteins and protein complexes. Interpreting these fragmentation patterns provides insight into the secondary and tertiary structures of protein ions. However, the inherent complexity and diversity of proteins often pose challenges in resolving their numerous conformations.

View Article and Find Full Text PDF

Gram-negative bacteria develop and exhibit resistance to antibiotics, owing to their highly asymmetric outer membrane maintained by a group of six proteins comprising the Mla (maintenance of lipid asymmetry) pathway. Here, we investigate the lipid binding preferences of one Mla protein, MlaC, which transports lipids through the periplasm. We used ultraviolet photodissociation (UVPD) to identify and characterize modifications of lipids endogenously bound to MlaC expressed in three different bacteria strains.

View Article and Find Full Text PDF

Fragmentation trends of large peptides were characterized by five activation methods, including HCD, ETD, EThcD, 213 nm UVPD, and 193 nm UVPD. Sequence coverages and scores were assessed based on charge site, peptide sequence, and peptide size. The effect of charge state and peptide size on sequence coverage was explored for a Glu-C digest of ribosomal proteins, and linear regression analysis of the collection of peptides indicated that HCD, ETD, and EThcD have a higher dependence charge state than 193 and 213 nm UV.

View Article and Find Full Text PDF

Lipopolysaccharides (LPS) and lipooligosaccharides (LOS) are located in the outer membrane of Gram-negative bacteria and are comprised of three distinctive parts: lipid A, core oligosaccharide (OS), and O-antigen. The structure of each region influences bacterial stability, toxicity, and pathogenesis. Here, we highlight the use of targeted activated-electron photodetachment (a-EPD) tandem mass spectrometry to characterize LPS and LOS from two crucial players in the human gut microbiota, Nissle and .

View Article and Find Full Text PDF
Article Synopsis
  • Phosphatases play a crucial role in cellular processes by working with kinases through phosphorylation and dephosphorylation, making them important targets for drug development.! -
  • The study employs ultraviolet photodissociation to investigate how two covalent inhibitors, T65 and rabeprazole, bind to the human SCP1 phosphatase and its mutant C181A, which has a nonreactive cysteine replaced.! -
  • Top-down mass spectrometry analysis helps identify where these inhibitors attach to the proteins and assess the reactivity of different cysteine residues involved in the binding process.!
View Article and Find Full Text PDF

As the development of new biotherapeutics advances, increasingly sophisticated tandem mass spectrometry methods are needed to characterize the most complex molecules, including antibody drug conjugates (ADCs). Lysine-linked ADCs, such as trastuzumab-emtansine (T-DM1), are among the most heterogeneous biotherapeutics. Here, we implement a workflow that combines limited proteolysis with HCD-triggered EThcD and UVPD mass spectrometry for the characterization of the resulting middle-down large-sized peptides of T-DM1.

View Article and Find Full Text PDF

CRISPR-Cas are adaptive immune systems in bacteria and archaea that utilize CRISPR RNA-guided surveillance complexes to target complementary RNA or DNA for destruction. Target RNA cleavage at regular intervals is characteristic of type III effector complexes. Here, we determine the structures of the Synechocystis type III-Dv complex, an apparent evolutionary intermediate from multi-protein to single-protein type III effectors, in pre- and post-cleavage states.

View Article and Find Full Text PDF

Mass-spectrometry-based methods have made significant progress in the characterization of post-translational modifications (PTMs) in peptides and proteins; however, room remains to improve fragmentation methods. Ideal MS/MS methods are expected to simultaneously provide extensive sequence information and localization of PTM sites and retain labile PTM groups. This collection of criteria is difficult to meet, and the various activation methods available today offer different capabilities.

View Article and Find Full Text PDF
Article Synopsis
  • Hypervirulent bacteria produce more extracellular polysaccharides, which form resilient biofilms that can be disrupted by the peptide bactenecin 7 (bac7 (1-35)).
  • Treatment with bac7 (1-35) causes the biofilm matrix to collapse, leading to the release and subsequent killing of bacterial cells.
  • Research identifies specific regions of bac7 (1-35) that interact with polysaccharides, demonstrating its effectiveness in reducing bacterial levels in a murine skin abscess model.
View Article and Find Full Text PDF

Glycoproteomics has accelerated in recent decades owing to numerous innovations in the analytical workflow. In particular, new mass spectrometry strategies have contributed to inroads in -glycoproteomics, a field that lags behind -glycoproteomics due to several unique challenges associated with the complexity of -glycosylation. This review will focus on progress in sample preparation, enrichment strategies, and MS/MS techniques for the identification and characterization of -glycoproteins.

View Article and Find Full Text PDF

Fluorescence resonance energy transfer (FRET) reporters are commonly used in the final stages of nucleic acid amplification tests to indicate the presence of nucleic acid targets, where fluorescence is restored by nucleases that cleave the FRET reporters. However, the need for dual labelling and purification during manufacturing contributes to the high cost of FRET reporters. Here we demonstrate a low-cost silver nanocluster reporter that does not rely on FRET as the on/off switching mechanism, but rather on a cluster transformation process that leads to fluorescence color change upon nuclease digestion.

View Article and Find Full Text PDF
Article Synopsis
  • The outer membrane of Gram-negative bacteria protects against environmental stressors and is composed of glycerophospholipids and lipopolysaccharides (LPS) or lipooligosaccharides (LOS), which play a crucial role in bacterial growth and defense.
  • This study delves into the synthesis of LOS core oligosaccharides in strains with mutations, using tandem mass spectrometry to identify essential genes for their assembly.
  • The research also suggests a novel connection between LOS and the peptidoglycan cell wall, highlighting a unique mechanism for core oligosaccharide assembly that could enhance our understanding of bacterial outer membrane integrity and tackle multidrug-resistant pathogens.
View Article and Find Full Text PDF