Publications by authors named "Brockman H"

The horticulture sector is facing various challenges in the near future. Aside from maintaining or even improving yields, sustainable horticulture production is crucial to achieve food security. Reducing the reliance on agro-chemicals and/or increasing the efficiency of use under a changing climate is crucial.

View Article and Find Full Text PDF

Phosphatidycholines (PC) with two saturated acyl chains (e.g., dipalmitoyl) mimic natural sphingomyelin (SM) by promoting raft formation in model membranes.

View Article and Find Full Text PDF

Among amphitropic proteins, human glycolipid transfer protein (GLTP) forms a structurally-unique fold that translocates on/off membranes to specifically transfer glycolipids. Phosphatidylcholine (PC) bilayers with curvature-induced packing stress stimulate much faster glycolipid intervesicular transfer than nonstressed PC bilayers raising questions about planar cytosol-facing biomembranes being viable sites for GLTP interaction. Herein, GLTP-mediated desorption kinetics of fluorescent glycolipid (tetramethyl-boron dipyrromethene (BODIPY)-label) from lipid monolayers are assessed using a novel microfluidics-based surface balance that monitors lipid lateral packing while simultaneously acquiring surface fluorescence data.

View Article and Find Full Text PDF

Lipid lateral organization in binary-constituent monolayers consisting of fluorescent and nonfluorescent lipids has been investigated by acquiring multiple emission spectra during measurement of each force-area isotherm. The emission spectra reflect BODIPY-labeled lipid surface concentration and lateral mixing with different nonfluorescent lipid species. Using principal component analysis (PCA) each spectrum could be approximated as the linear combination of only two principal vectors.

View Article and Find Full Text PDF

Side chain oxysterols exert cholesterol homeostatic effects by suppression of sterol regulatory element-binding protein maturation and promoting degradation of hydroxymethylglutaryl-CoA reductase. To examine whether oxysterol-membrane interactions contribute to the regulation of cellular cholesterol homeostasis, we synthesized the enantiomer of 25-hydroxycholesterol. Using this unique oxysterol probe, we provide evidence that oxysterol regulation of cholesterol homeostatic responses is not mediated by enantiospecific oxysterol-protein interactions.

View Article and Find Full Text PDF

Membrane lipids are structurally diverse in ways that far exceed the role envisioned by Singer and Nicholson of simply providing a fluid bilayer matrix in which proteins reside. Current models of lipid organization in membranes postulate that lipid structural diversity enables nonrandom lipid mixing in each leaflet of the bilayer, resulting in regions with special physical and functional properties, i.e.

View Article and Find Full Text PDF

Docosahexaenoic acid-containing phosphoglycerides accumulate preferentially in membranes of the retina, brain, and spermatozoa, but the functional significance of this largely remains to be determined. Previously we compared the physical properties of homogeneous monolayers of these and other phosphoglyceride species to obtain insights into their physiological roles. Particularly noteworthy were the unusually low dipole moments of species having sn-2-docosahexaenoyl chains.

View Article and Find Full Text PDF

Many fluorescent lipid probes tend to loop back to the membrane interface when attached to a lipid acyl chain rather than embedding deeply into the bilayer. To achieve maximum embedding of BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) fluorophore into the bilayer apolar region, a series of sn-2 acyl-labeled phosphatidylcholines was synthesized bearing 4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene-8-yl (Me(4)-BODIPY-8) at the end of C(3)-, C(5)-, C(7)-, or C(9)-acyl. A strategy was used of symmetrically dispersing the methyl groups at BODIPY ring positions 1, 3, 5, and 7 to decrease fluorophore polarity.

View Article and Find Full Text PDF

Two models have been developed to describe the adsorption of a model peripheral protein, colipase, to phospholipid/diacylglycerol (PL/DG) monolayers. One model is applicable at monolayer collapse pressure and at any composition that exceeds the DG mole fraction of PL/DG lateral complexes (Sugár, I. P.

View Article and Find Full Text PDF

Lactosylceramide (LacCer) is a key intermediate in glycosphingolipid metabolism and is highly enriched in detergent-resistant biomembrane fractions associated with microdomains, i.e., rafts and caveolae.

View Article and Find Full Text PDF

Long-chain cationic amphipaths are routinely used for transfecting DNA into cells, although the mechanism of DNA delivery by these agents is poorly understood. Since their interfacial properties are undoubtedly involved at some stage in the process, a comprehensive study of the surface behavior of at least one of these compounds is highly desirable. Hence, the behavior of the cationic transfection agent EDOPC (dioleoyl-sn-glycerol-3-ethylphosphocholine or O-ethyldioleoylphosphatidylcholine), has been characterized at the air-water interface, by itself and in mixtures with other phospholipids.

View Article and Find Full Text PDF

Interfacial processes involving peripheral proteins depend on the composition and packing density of the interfacial lipid molecules. As a biological membrane model, lipid monolayers at the gas-liquid interface allow independent control of these parameters. However, measuring protein adsorption to monolayers has been difficult.

View Article and Find Full Text PDF

The interaction of a peripheral protein with a lipid-water interface can show a pronounced dependence on the composition and two-dimensional packing density of the lipids that comprise the interface. We report a novel optical method for measuring the adsorption of macromolecules, such as proteins and nucleic acids, and smaller solutes, such as drugs, to lipid monolayers at the gas-liquid interface. Using fluorescence emission from proteins and a small molecule, we demonstrate that the emissions from these solutes when in the aqueous phase and when associated with the monolayer can be temporally separated.

View Article and Find Full Text PDF

In fluid monolayers approaching collapse, phospholipids and their complexes with diacylglycerols hinder adsorption to the monolayer of the amphipathic protein, colipase. Herein, a statistical, free-area model, analogous to that used to analyze two-dimensional lipid diffusion, is developed to describe regulation by lipids of the initial rate of protein adsorption from the bulk aqueous phase to the lipid-water interface. It is successfully applied to rate data for colipase adsorption to phospholipid alone and yields realistic values of the two model parameters; the phospholipid excluded area and the critical free surface area required to initiate adsorption.

View Article and Find Full Text PDF

The biological activities of ceramides show a large variation with small changes in molecular structure. To help understand how the structure regulates the activity of this important lipid second messenger, we investigated the interfacial features of a series of synthetic ceramide analogs in monomolecular films at the argon-buffer interface. To minimize differences arising from the N-acyl moiety, each analog had either a N-hexadecanoyl or a N-cis-4-hexadecenoyl moiety amide linked to the nitrogen of the sphingosine backbone.

View Article and Find Full Text PDF

Objective: Olopatadine, an effective topical ocular human conjunctival mast cell stabilizer/antihistaminic antiallergic drug, was evaluated and compared to selected classical antihistamines for their interaction with model and natural membranes to ascertain potential functional consequences of such interactions.

Methods: The model membranes examined consisted of the argon-buffer interface and monomolecular films of 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC) at the argon-buffer interface. Interactions with the model membranes were detected as changes in surface tension, i.

View Article and Find Full Text PDF

Membrane microdomains, such as caveolae and rafts, are enriched in cholesterol and sphingomyelin, display liquid-ordered phase properties, and putatively function as protein organizing platforms. The goal of this investigation was to identify sterol and sphingomyelin structural features that modulate surface compression and solubilization by detergent because liquid-ordered phase displays low lateral elasticity and resists solubilization by Triton X-100. Compared to cholesterol, sterol structural changes involved either altering the polar headgroup (e.

View Article and Find Full Text PDF

In A431 cells, depletion of cholesterol with methyl-beta-cyclodextrin induced an increase in both basal and epidermal growth factor (EGF)-stimulated EGF receptor phosphorylation. This increase in phosphorylation was site-specific, with significant increases occurring at Tyr845, Tyr992, and Tyr1173, but only minor changes at Tyr1045 and Tyr1068. The elevated level of receptor phosphorylation was associated with an increase in the intrinsic kinase activity of the EGF receptor kinase, possibly as a result of the cyclodextrin-induced enhancement of the phosphorylation of Tyr845, a site in the kinase activation loop known to be phosphorylated by pp60src.

View Article and Find Full Text PDF

Mammalian synaptic membranes appear to contain high proportions of specific, sn-1-stearoyl-2-docosahexaenoyl- and sn-1-stearoyl-2-arachidonoyl phosphoglycerides, but the structural significance of this is unclear. Here we used a standardized approach to compare the properties of homogeneous monolayers of the corresponding phosphatidylcholines, phosphatidylethanolamines, phosphatidylserines, and phosphatidic acids with those of control monolayers of sn-1-stearoyl-2-oleoyl- and sn-1-palmitoyl-2-oleoyl phosphoglycerides. Major findings were: 1), that the presence of an sn-2-docosahexaenoyl group or an sn-2-arachidonoyl group increases the molecular areas of phosphoglycerides by 3.

View Article and Find Full Text PDF

Oral administration of epsilon-polylysine to rats reduced the peak plasma triacylglycerol concentration. In vitro, epsilon-polylysine and polylysine strongly inhibited the hydrolysis, by either pancreatic lipase or carboxylester lipase, of trioleoylglycerol (TO) emulsified with phosphatidylcholine (PC) and taurocholate. The epsilon-polylysine concentration required for complete inhibition of pancreatic lipase, 10 microg/ml, is 1,000 times lower than that of BSA required for the same effect.

View Article and Find Full Text PDF

Lipases are extracellular peripheral proteins that act at the surface of lipid emulsions stabilized, typically, by phospholipids. At a critical composition lipase activity toward substrates in phospholipid monolayers is discontinuously switched on by a small increase in substrate mole fraction. This occurs in part because lipase binding is inhibited by phospholipids.

View Article and Find Full Text PDF

Lactosylceramide (LacCer) is a pivotal intermediate in the metabolism of higher gangliosides, localizes to sphingolipid-sterol "rafts," and has been implicated in cellular signaling. To provide a fundamental characterization of LacCer phase behavior and intermolecular packing, LacCer containing different saturated (16:0, 18:0, 24:0) or monounsaturated (18:1(Delta9), 24:1(Delta15)) acyl chains were synthesized and studied by differential scanning calorimetry and Langmuir film balance approaches. Compared to related sphingoid- and glycerol-based lipids, LacCers containing saturated acyl chains display relatively high thermotropic and pressure-induced transitions.

View Article and Find Full Text PDF

Lipids containing the dimethyl BODIPY fluorophore are used in cell biology because their fluorescence properties change with fluorophore concentration (C.-S. Chen, O.

View Article and Find Full Text PDF

The interfacial packing behavior of N-myristoyldimyristoylphosphatidylethanolamine (N-14:0 DMPE) and its interaction with cholesterol were characterized and compared to the behavior of dimyristoylphosphatidylethanolamine (DMPE) using an automated Langmuir type film balance. Surface pressure and surface potential were monitored as a function of lipid cross-sectional molecular area. N-14:0 DMPE exhibited two-dimensional (2D) phase transitions of a liquid-expanded to condensed nature at many temperatures in the 15-30 °C range, but isotherms showed only condensed behavior at 15 °C.

View Article and Find Full Text PDF