The Reissner fiber (RF) is an acellular thread positioned in the midline of the central canal that aggregates thanks to the beating of numerous cilia from ependymal radial glial cells (ERGs) generating flow in the central canal of the spinal cord. RF together with cerebrospinal fluid (CSF)-contacting neurons (CSF-cNs) form an axial sensory system detecting curvature. How RF, CSF-cNs and the multitude of motile cilia from ERGs interact in vivo appears critical for maintenance of RF and sensory functions of CSF-cNs to keep a straight body axis, but is not well-understood.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2023
Gas vesicles used as contrast agents for noninvasive ultrasound imaging must be formulated to be stable, and their mechanical properties must be assessed. We report here the formation of perfluoro--butane microbubbles coated with surface-active proteins that are produced by filamentous fungi (hydrophobin HFBI from ). Using pendant drop and pipette aspiration techniques, we show that these giant gas vesicles behave like glassy polymersomes, and we discover novel gas extraction regimes.
View Article and Find Full Text PDFWe study the fusion of homogeneous cell aggregates and of hybrid aggregates combining cells and microparticles. In all cases, we find that the contact area does not vary linearly over time, as observed for liquid drops, but rather it follows a power law in . This result is interpreted by generalizing the fusion model of soft viscoelastic solid balls to viscoelastic liquid balls, akin to jelly pearls.
View Article and Find Full Text PDFThe actin cytoskeleton shapes cells and also organizes internal membranous compartments. In particular, it interacts with membranes for intracellular transport of material in mammalian cells, yeast, or plant cells. Tubular membrane intermediates, pulled along microtubule tracks, are formed during this process and destabilize into vesicles.
View Article and Find Full Text PDFDespite extensive knowledge on the mechanisms that drive single-cell migration, those governing the migration of cell clusters, as occurring during embryonic development and cancer metastasis, remain poorly understood. Here, we investigate the collective migration of cell on adhesive gels with variable rigidity, using 3D cellular aggregates as a model system. After initial adhesion to the substrate, aggregates spread by expanding outward a cell monolayer, whose dynamics is optimal in a narrow range of rigidities.
View Article and Find Full Text PDFThe shape of cellular membranes is highly regulated by a set of conserved mechanisms that can be manipulated by bacterial pathogens to infect cells. Remodeling of the plasma membrane of endothelial cells by the bacterium Neisseria meningitidis is thought to be essential during the blood phase of meningococcal infection, but the underlying mechanisms are unclear. Here we show that plasma membrane remodeling occurs independently of F-actin, along meningococcal type IV pili fibers, by a physical mechanism that we term 'one-dimensional' membrane wetting.
View Article and Find Full Text PDFThe sulfobetaine (SB) moiety, which comprises a quaternary ammonium group linked to a negatively charged sulfonate ester, is known to impart nonfouling properties to interfaces coated with polysulfobetaines or grafted with SB-polymeric brushes. Increasingly, evidence emerges that the SB group is, overall, a better antifouling group than the phosphorylcholine (PC) moiety extensively used in the past. We report here the synthesis of a series of SB-modified chitosans (CH-SB) carrying between 20 and 40 mol % SB per monosaccharide unit.
View Article and Find Full Text PDFControlling the propagation of primary tumors is fundamental to avoiding the epithelial to mesenchymal transition process leading to the dissemination and seeding of tumor cells throughout the body. Here we demonstrate that nanoparticles (NPs) limit the propagation of cell aggregates of CT26 murine carcinoma cells used as tumor models. The spreading behavior of these aggregates incubated with NPs is studied on fibronectin-coated substrates.
View Article and Find Full Text PDFEndometrial cancer (EC) is the sixth deadliest cancer in women. The depth of myometrial invasion is one of the most important prognostic factors, being directly associated with tumor recurrence and mortality. In this study, ALCAM, a previously described marker of EC recurrence, was studied by immunohistochemistry at the superficial and the invasive tumor areas from 116 EC patients with different degree of myometrial invasion and related to a set of relevant epithelial and mesenchymal markers.
View Article and Find Full Text PDFWe study the spreading of cell aggregates deposited on adhesive substrates decorated with microparticles (MPs). A cell monolayer expands around the aggregate. The cells on the periphery of the monolayer take up the MPs, clearing the substrate as they progress and forming an aureole of cells filled with MPs.
View Article and Find Full Text PDFWe study spreading on soft substrates of cellular aggregates using CT26 cells that produce an extracellular matrix (ECM). Compared to our previous work on the spreading of S180 cellular aggregates, which did not secrete ECMs, we found that the spreading velocity of the precursor film is also maximal for intermediate rigidities, but new striking features show up. First, we observed a cascade of liquid-gas-liquid (L/G/L) transitions of the precursor film as the substrate rigidity is decreased.
View Article and Find Full Text PDFEndometrial cancer is the most common gynaecological cancer in western countries, being the most common subtype of endometrioid tumours. Most patients are diagnosed at an early stage and present an excellent prognosis. However, a number of those continue to suffer recurrence, without means of identification by risk classification systems.
View Article and Find Full Text PDFWe present direct evidence that nanoparticles (NPs) can stick together cells that are inherently non-adhesive. Using cadherin-depleted S180 murine cells lines, which exhibit very low cell-cell adhesion, we show that NPs can assemble dispersed single cells into large cohesive aggregates. The dynamics of aggregation, which is controlled by diffusion and collision, can be described as a second-order kinetic law characterized by a rate of collision that depends on the size, concentration, and surface chemistry of the NPs.
View Article and Find Full Text PDFCell-shape changes are insured by a thin, dynamic, cortical layer of cytoskeleton underneath the plasma membrane. How this thin cortical structure impacts the mechanical properties of the whole cell is not fully understood. Here, we study the mechanics of liposomes or giant unilamellar vesicles, when a biomimetic actin cortex is grown at the inner layer of the lipid membrane via actin-nucleation-promoting factors.
View Article and Find Full Text PDFAquaporin 0 (AQP0) is a transmembrane protein specific to the eye lens, involved as a water carrier across the lipid membranes. During eye lens maturation, AQP0s are truncated by proteolytic cleavage. We investigate in this work the capability of truncated AQP0 to conduct water across membranes.
View Article and Find Full Text PDFMembrane tubes are commonly extruded from cells and vesicles when a point-like force is applied on the membrane. We report here the unexpected formation of membrane tubes from lymph node cancer prostate (LNCaP) cell aggregates in the absence of external applied forces. The spreading of LNCaP aggregates deposited on adhesive glass substrates coated with fibronectin is very limited because cell-cell adhesion is stronger than cell-substrate adhesion.
View Article and Find Full Text PDFLike liquid droplets, cellular aggregates, also called "living droplets," spread onto adhesive surfaces. When deposited onto fibronectin-coated glass or polyacrylamide gels, they adhere and spread by protruding a cellular monolayer (precursor film) that expands around the droplet. The dynamics of spreading results from a balance between the pulling forces exerted by the highly motile cells at the periphery of the film, and friction forces associated with two types of cellular flows: (i) permeation, corresponding to the entry of the cells from the aggregates into the film; and (ii) slippage as the film expands.
View Article and Find Full Text PDFWe propose a novel characterization method of randomly branched polymers based on the geometrical property of such objects in confined spaces. The central idea is that randomly branched polymers exhibit a passing/clogging transition across the nanochannel as a function of the channel size. This critical channel size depends on the degree of the branching, whereby allowing the extraction of the branching information of the molecule.
View Article and Find Full Text PDFDewetting is the spontaneous withdrawal of a liquid film from a non-wettable surface by nucleation and growth of dry patches. Two recent reports now propose that the principles of dewetting explain the physical phenomena underpinning the opening of transendothelial cell macroaperture (TEM) tunnels, referred to as cellular dewetting. This was discovered by studying a group of bacterial toxins endowed with the property of corrupting actomyosin cytoskeleton contractility.
View Article and Find Full Text PDFAnalogies with inert soft condensed matter--such as viscoelastic liquids, pastes, foams, emulsions, colloids, and polymers--can be used to investigate the mechanical response of soft biological tissues to forces. A variety of experimental techniques and biophysical models have exploited these analogies allowing the quantitative characterization of the mechanical properties of model tissues, such as surface tension, elasticity, and viscosity. The framework of soft matter has been successful in explaining a number of dynamical tissue behaviors observed in physiology and development, such as cell sorting, tissue spreading, or the escape of individual cells from a tumor.
View Article and Find Full Text PDFEur Phys J E Soft Matter
November 2012
We examine the spreading of cellular aggregates deposited on adhesive striated glass surfaces consisting of 100 μm large bands alternatively coated with fibronectin and with PolyEthyleneGlycol-Poly-L-lysine (PEG-PLL). The aggregates spread confined to the adhesive fibronectin bands. A front of cells expands from the aggregate at constant velocity.
View Article and Find Full Text PDFWe report new experimental results on the dewetting of a mercury film (A) intercalated between a glass slab and an external nonmiscible liquid phase (B) under conditions of a large equilibrium contact angle. The viscosity of the external phase, ηB, was varied over 7 orders of magnitude. We observe a transition between two regimes of dewetting at a threshold viscosity of η(B)* ≈ (ρ(A)e|S̃|)(1/2), where ρ(A) is the mercury density, e is the film thickness, and |S̃| is the effective spreading coefficient.
View Article and Find Full Text PDFPathogenic bacteria can cross from blood vessels to host tissues by opening transendothelial cell macroapertures (TEMs). To induce TEM opening, bacteria intoxicate endothelial cells with proteins that disrupt the contractile cytoskeletal network. Cell membrane tension is no longer resisted by contractile fibers, leading to the opening of TEMs.
View Article and Find Full Text PDFWe investigate the physical principles of cellular layer stability. We show that cohesive cellular layers deposited on non-adhesive substrates are metastable and "dewet" by nucleation and growth of dry patches. The dewetting process can be induced either chemically by a non-adhesive surface treatment or, unlike simple liquids, physically by a decrease in the substrate rigidity.
View Article and Find Full Text PDFDuring embryonic development and wound healing, the mechanical signals transmitted from cells to their neighbors induce tissue rearrangement and directional movements. It has been observed that forces exerted between cells in a developing tissue under stress are not always monotonically varying, but they can be pulsatile. Here we investigate the response of model tissues to controlled external stresses.
View Article and Find Full Text PDF