On 1 January 2013, research using cephalopod molluscs, from hatchlings to adults, became regulated within Directive 2010/63/EU. There are significant difficulties in captive breeding in the great majority of currently utilised species. Thus, scientific research relies upon the use of wild-caught animals.
View Article and Find Full Text PDFStudy Design: Systematic review and meta-analysis.
Objective: To compare early (<24h) versus late (>24h) spinal cord decompression on neurological recovery in patients with acute spinal cord injury.
Methods: A systematic review was performed according to the PRISMA protocol to identify studies published up to December 2022.
Study Design: Systematic review and meta-analysis.
Objective: To compare early (<24h) versus late (>24h) spinal cord decompression on neurological recovery in patients with acute spinal cord injury.
Methods: A systematic review was performed according to the PRISMA protocol to identify studies published up to December 2022.
Myelin, critical for the correct function of the nervous system, is organized in different patterns that can include long non-myelinated axonal segments. How myelin patterning is regulated remains unexplained. The carbohydrate-binding protein galectin-4 (Gal-4) influences oligodendrocyte differentiation in vitro and is associated with non-myelinable axon segments (NMS) in cultured neurons.
View Article and Find Full Text PDFThe mature nervous system relies on the polarized morphology of neurons for a directed flow of information. These highly polarized cells use their somatodendritic domain to receive and integrate input signals while the axon is responsible for the propagation and transmission of the output signal. However, the axon must perform different functions throughout development before being fully functional for the transmission of information in the form of electrical signals.
View Article and Find Full Text PDFWorldwide, raised blood pressure is estimated to affect 35-40% of the adult population and is a main conditioning factor for cardiovascular diseases and stroke. Animal models of hypertension have provided great advances concerning the pathophysiology of human hypertension, as already shown for the deoxycorticosterone-salt treated rat, the Dahl-salt sensitive rat, the Zucker obese rat and the spontaneously hypertensive rat (SHR). SHR has been widely used to study abnormalities of the brain in chronic hypertension.
View Article and Find Full Text PDFThe modulation of brain function and behavior by steroid hormones was classically associated with their secretion by peripheral endocrine glands. The discovery that the brain expresses the enzyme aromatase, which produces estradiol from testosterone, expanded this traditional concept. One of the best-studied roles of brain estradiol synthesis is the control of reproductive behavior.
View Article and Find Full Text PDFDamage observed in the hippocampus of the adult spontaneously hypertensive rat (SHR) resembles the neuropathology of mineralocorticoid-induced hypertension, supporting a similar endocrine dysfunction in both entities. In the present study, we tested the hypothesis that increased expression of the hippocampal mineralocorticoid receptor (MR) in SHR animals is associated with a prevalent expression of pro-inflammatory over anti-inflammatory factors. Accordingly, in the hippocampus, we measured mRNA expression and immunoreactivity of the MR and glucocorticoid receptor (GR) using a quantitative polymerase chain reaction and histochemistry.
View Article and Find Full Text PDFSpontaneously hypertensive rats (SHR) show pronounced hippocampus alterations, including low brain-derived neurotrophic factor (BDNF) expression, reduced neurogenesis, astrogliosis and increased aromatase expression. These changes are reverted by treatment with 17β-oestradiol. To determine which oestradiol receptor (ER) type is involved in these neuroprotective effects, we used agonists of the ERα [propylpyrazole triol (PPT)] and the ERβ [diarylpropionitrite (DPN)] given over 2 weeks to 4-month-old male SHR.
View Article and Find Full Text PDFRev Esp Med Nucl Imagen Mol
August 2017
Purpose: Radioiodine (RAI) is a cornerstone in the treatment of Differentiated Thyroid Cancer (DTC). In patients on haemodialysis due to End-Stage Renal Disease (ESRD), it must be used cautiously, considering the renal clearance of this radionuclide. Also, the safety of the procedure and subsequent long-term outcome is still not well defined.
View Article and Find Full Text PDFPrevious work has shown a reduction of apical dendritic length and spine density in neurons from the CA1 hippocampus subfield of spontaneously hypertensive rats (SHRs). These abnormalities are prevented by treatment for 2 weeks with 17β-estradiol. In view of the fact that diabetes and hypertension are comorbid diseases, we have now studied the effect of Streptozotocin-induced diabetes on the dendritic tree and spines of CA1 hippocampus neurons, and also compared the regulation of these parameters by 17β-estradiol in diabetic and normoglycemic SHR.
View Article and Find Full Text PDFJ Steroid Biochem Mol Biol
February 2015
Estrogens are neuroprotective factors for brain diseases, including hypertensive encephalopathy. In particular, the hippocampus is highly damaged by high blood pressure, with several hippocampus functions being altered in humans and animal models of hypertension. Working with a genetic model of primary hypertension, the spontaneously hypertensive rat (SHR), we have shown that SHR present decreased dentate gyrus neurogenesis, astrogliosis, low expression of brain derived neurotrophic factor (BDNF), decreased number of neurons in the hilus of the dentate gyrus, increased basal levels of the estrogen-synthesizing enzyme aromatase, and atrophic dendritic arbor with low spine density in the CA1 region compared to normotensive Wistar Kyoto (WKY) ratsl.
View Article and Find Full Text PDF17β-oestradiol is a powerful neuroprotective factor for the brain abnormalities of spontaneously hypertensive rats (SHR). 17α-Oestradiol, a nonfeminising isomer showing low affinity for oestrogen receptors, is also endowed with neuroprotective effects in vivo and in vitro. We therefore investigated whether treatment with 17α-oestradiol prevented pathological changes of the hippocampus and hypothalamus of SHR.
View Article and Find Full Text PDFIncreased neuronal vulnerability has been described in the brain of spontaneously hypertensive rats (SHR), models of primary hypertension. Previous data indicate that estradiol treatment corrects several dysfunctions of the hippocampus and hypothalamus of SHR. Considering this evidence we analyzed the dendritic arborization and spine density of the CA1 subfield in SHR and Wistar-Kyoto (WKY) normotensive rats with and without estradiol treatment.
View Article and Find Full Text PDFIn mice with experimental autoimmune encephalomyelitis (EAE) pretreatment with progesterone improves clinical signs and decreases the loss of myelin basic protein (MBP) and proteolipid protein (PLP) measured by immunohistochemistry and in situ hybridization. Presently, we analyzed if progesterone effects in the spinal cord of EAE mice involved the decreased transcription of local inflammatory mediators and the increased transcription of myelin proteins and myelin transcription factors. C57Bl/6 female mice were divided into controls, EAE and EAE receiving progesterone (100mg implant) 7 days before EAE induction.
View Article and Find Full Text PDFBesides their effects on reproduction, estrogens exert neuroprotective effects for brain diseases. Thus, estrogens ameliorate the negative aspects of aging and age-associated diseases in the nervous system, including hypertension. Within the brain, the hippocampus is sensitive to the effects of hypertension, as exemplified in a genetic model, the spontaneously hypertensive rat (SHR).
View Article and Find Full Text PDFThe mineralocorticoid receptor (MR) has been considered as both neuroprotective and damaging to the function of the central nervous system. MR may be also involved in central regulation of blood pressure. In the present study, we compared the expression of MR and the glucocorticoid receptor (GR) in the hippocampus and hypothalamus of 16-week-old spontaneously hypertensive rats (SHR) and normotensive control Wistar Kyoto (WKY) rats.
View Article and Find Full Text PDFHorm Mol Biol Clin Investig
December 2010
Estrogen neuroprotection has been shown in pathological conditions damaging the hippocampus, such as trauma, aging, neurodegeneration, excitotoxicity, oxidative stress, hypoglycemia, amyloid-β peptide exposure and ischemia. Hypertensive encephalopathy also targets the hippocampus; therefore, hypertension seems an appropriate circumstance to evaluate steroid neuroprotection. Two experimental models of hypertension, spontaneously hypertensive rats (SHR) and deoxycorticosterone (DOCA)-salt hypertensive rats, develop hippocampal abnormalities, which include decreased neurogenesis in the dentate gyrus, astrogliosis, low expression of brain-derived neurotrophic factor (BDNF) and decreased number of neurons in the hilar region, with respect of their normotensive strains Wistar Kyoto (WKY) and Sprague-Dawley rats.
View Article and Find Full Text PDFThere is high incidence of hippocampal abnormalities in spontaneously hypertensive rats (SHR), including decreased neurogenesis in the dentate gyrus, astrogliosis, low expression of brain derived neurotrophic factor and decreased neuronal density in the hilar region, respect of normotensive Wistar Kyoto rats (WKY). Estradiol treatment given for 2 weeks normalized the faulty hippocampal parameters of SHR, without having effects on WKY rats. The present work studied the potential role of local estrogen biosynthesis in the hippocampus of SHR and WKY, by measuring the expression of aromatase, the key enzyme responsible for estrogen biosynthesis and involved in neuroprotection.
View Article and Find Full Text PDFWe report the case of an elderly patient affected by Philadelphia positive Acute Lymphoblastic Leukaemia (Ph(+) ALL) who developed meningeal leukaemia during imatinib monotherapy, despite bone marrow molecular remission. Aggressive central nervous system (CNS)-directed therapy in combination with continued imatinib treatment might be, at the moment, the most effective salvage therapy for imatinib-responsive elderly patients with isolated CNS relapse. In view of the inefficacy of imatinib at preventing meningeal leukaemia for its poor penetration into the CNS, CNS prophylactic therapy should always be an integral part of any imatinib-based treatment strategy for Ph(+) ALL.
View Article and Find Full Text PDF