Publications by authors named "Brocard J"

Genetic screening of rare diseases allows identification of the responsible gene(s) in about 50% of patients. The remaining cases are in a diagnostic deadlock as current knowledge fails to identify the correct gene or determine if the detected variant on the gene is pathogenic. These are named "variants of unknown significance" (VUS).

View Article and Find Full Text PDF
Article Synopsis
  • * The researchers focused on a dominant form of central core disease due to a specific mutation, using CRISPR-Cas9 technology to target and inactivate the mutated gene.
  • * Successful deletion of the mutant allele in patient myoblasts was demonstrated, showing potential functional benefits and suggesting that this approach could help 20% of patients with similar mutations.
View Article and Find Full Text PDF

Quantifying axonal branching is crucial for understanding neural circuit function, developmental and regeneration processes and disease mechanisms. Factors that regulate patterns of axonal arborization and tune neuronal circuits are investigated for their implication in various disorders in brain connectivity. The lack of a reliable and user-friendly method makes the quantitative analysis of axon morphology difficult.

View Article and Find Full Text PDF

Neurotransmitters are released at synapses by synaptic vesicles (SVs), which originate from SV precursors (SVPs) that have traveled along the axon. Because each synapse maintains a pool of SVs, only a small fraction of which are released, it has been thought that axonal transport of SVPs does not affect synaptic function. Here, studying the corticostriatal network both in microfluidic devices and in mice, we find that phosphorylation of the Huntingtin protein (HTT) increases axonal transport of SVPs and synaptic glutamate release by recruiting the kinesin motor KIF1A.

View Article and Find Full Text PDF

The expression of the Huntingtin protein, well known for its involvement in the neurodegenerative Huntington's disease, has been confirmed in skeletal muscle. The impact of HTT deficiency was studied in human skeletal muscle cell lines and in a mouse model with inducible and muscle-specific HTT deletion. Characterization of calcium fluxes in the knock-out cell lines demonstrated a reduction in excitation-contraction (EC) coupling, related to an alteration in the coupling between the dihydropyridine receptor and the ryanodine receptor, and an increase in the amount of calcium stored within the sarcoplasmic reticulum, linked to the hyperactivity of store-operated calcium entry (SOCE).

View Article and Find Full Text PDF

Microtubules play fundamental roles in the maintenance of neuronal processes and in synaptic function and plasticity. While dynamic microtubules are mainly composed of tyrosinated tubulin, long-lived microtubules contain detyrosinated tubulin, suggesting that the tubulin tyrosination/detyrosination cycle is a key player in the maintenance of microtubule dynamics and neuronal homeostasis, conditions that go awry in neurodegenerative diseases. In the tyrosination/detyrosination cycle, the C-terminal tyrosine of α-tubulin is removed by tubulin carboxypeptidases and re-added by tubulin tyrosine ligase (TTL).

View Article and Find Full Text PDF

Background: Intermittent hypoxia (IH) is the major feature of obstructive sleep apnea syndrome, well-known to induce cardiometabolic complications. We previously demonstrated that IH induces hyperinsulinemia and associated altered insulin signaling in adipose tissue, liver, and skeletal muscle, but impact of IH on cardiac insulin signaling and functional/structural consequences remains unknown. Therefore, the aims of this study were to investigate in both lean and obese mice the effects of chronic IH on the following: (1) cardiac insulin signaling and (2) cardiac remodeling and function.

View Article and Find Full Text PDF

Mutations in the RYR1 gene, encoding the skeletal muscle calcium channel RyR1, lead to congenital myopathies, through expression of a channel with abnormal permeability and/or in reduced amount, but the direct functional whole organism consequences of exclusive reduction in RyR1 amount have never been studied. We have developed and characterized a mouse model with inducible muscle specific RYR1 deletion. Tamoxifen-induced recombination in the RYR1 gene at adult age resulted in a progressive reduction in the protein amount reaching a stable level of 50% of the initial amount, and was associated with a progressive muscle weakness and atrophy.

View Article and Find Full Text PDF
Article Synopsis
  • Congenital nemaline myopathies are rare muscle disorders marked by weakness and rod-like inclusions in muscle fibers, often leading to serious complications.
  • The study utilized next-generation sequencing to identify pathogenic variants in the troponin T gene in three patients, all of whom exhibited similar severe symptoms like muscle hypotonia and progressive respiratory failure.
  • Genetic analysis revealed various mutations resulting in the complete absence of the troponin T protein, supporting the idea that these recessive mutations lead to a consistent clinical phenotype among affected individuals.
View Article and Find Full Text PDF

Morphometry characterization is an important procedure in describing neuronal cultures and identifying phenotypic differences. This task usually requires labor-intensive measurements and the classification of numerous neurites from large numbers of neurons in culture. To automate these measurements, we wrote AutoNeuriteJ, an imageJ/Fiji plugin that measures and classifies neurites from a very large number of neurons.

View Article and Find Full Text PDF

Objectives: Exertional Heat Stroke (EHS) is one of the top three causes of sudden death in athletes. Extrinsic and intrinsic risk factors have been identified but the genetic causes still remain unclear. Our aim was to identify genes responsible for EHS, which is a necessary step to identify patients at risk and prevent crises.

View Article and Find Full Text PDF

In skeletal muscle, proteins of the calcium release complex responsible for the excitation-contraction (EC) coupling are exclusively localized in specific reticulum-plasma membrane (ER-PM) contact points named triads. The CRC protein triadin (T95) is localized in the sarcoplasmic reticulum (SR) subdomain of triads where it forms large multimers. However, the mechanisms leading to the steady-state accumulation of T95 in these specific areas of SR are largely unknown.

View Article and Find Full Text PDF

Adult genetic disorders causing brain lesions have been mostly described as white matter vanishing diseases. We present here the investigations realized in patients referred for psychiatric disorder with magnetic resonance imaging showing atypical basal ganglia lesions. Genetic explorations of this family revealed a new hereditary disease linked to glutathione metabolism.

View Article and Find Full Text PDF

Recessive forms of catecholaminergic polymorphic ventricular tachycardia (CPVT) are induced by mutations in genes encoding triadin or calsequestrin, two proteins that belong to the Ca release complex, responsible for intracellular Ca release triggering cardiac contractions. To better understand the mechanisms of triadin-induced CPVT and to assay multiple therapeutic interventions, we used a triadin knockout mouse model presenting a CPVT-like phenotype associated with a decrease in calsequestrin protein level. We assessed different approaches to rescue protein expression and to correct intracellular Ca release and cardiac function: pharmacological treatment with kifunensine or a viral gene transfer-based approach, using adeno-associated virus serotype 2/9 (AAV2/9) encoding the triadin or calsequestrin.

View Article and Find Full Text PDF

Several morphological phenotypes have been associated to RYR1-recessive myopathies. We recharacterized the RYR1-recessive morphological spectrum by a large monocentric study performed on 54 muscle biopsies from a large cohort of 48 genetically confirmed patients, using histoenzymology, immunohistochemistry, and ultrastructural studies. We also analysed the level of RyR1 expression in patients' muscle biopsies.

View Article and Find Full Text PDF

Background: The skeletal muscle fiber has a specific and precise intracellular organization which is at the basis of an efficient muscle contraction. Microtubules are long known to play a major role in the function and organization of many cells, but in skeletal muscle, the contribution of the microtubule cytoskeleton to the efficiency of contraction has only recently been studied. The microtubule network is dynamic and is regulated by many microtubule-associated proteins (MAPs).

View Article and Find Full Text PDF

Emerging evidence indicates that microtubule-associated proteins (MAPs) are implicated in synaptic function; in particular, mice deficient for MAP6 exhibit striking deficits in plasticity and cognition. How MAP6 connects to plasticity mechanisms is unclear. Here, we address the possible role of this protein in dendritic spines.

View Article and Find Full Text PDF

Background: Severe and medication-resistant psychiatric diseases, such as major depressive disorder, bipolar disorder or schizophrenia, can be effectively and rapidly treated by electroconvulsive therapy (ECT). Despite extensive long-standing clinical use, the neurobiological mechanisms underlying the curative action of ECT remain incompletely understood.

Objective: Unravel biological basis of electroconvulsive stimulation (ECS) efficacy, the animal equivalent of ECT.

View Article and Find Full Text PDF

MAP6 proteins were first described as microtubule-stabilizing agents, whose properties were thought to be essential for neuronal development and maintenance of complex neuronal networks. However, deletion of all MAP6 isoforms in MAP6 KO mice does not lead to dramatic morphological aberrations of the brain but rather to alterations in multiple neurotransmissions and severe behavioural impairments. A search for protein partners of MAP6 proteins identified Tctex1 - a dynein light chain with multiple non-microtubule-related functions.

View Article and Find Full Text PDF

In the central nervous system, microtubule-associated protein 6 (MAP6) is expressed at high levels and is crucial for cognitive abilities. The large spectrum of social and cognitive impairments observed in MAP6-KO mice are reminiscent of the symptoms observed in psychiatric diseases, such as schizophrenia, and respond positively to long-term treatment with antipsychotics. MAP6-KO mice have therefore been proposed to be a useful animal model for these diseases.

View Article and Find Full Text PDF

Background: Central Core Disease (CCD) is a congenital myopathy often resulting from a mutation in RYR1 gene. Mutations in RyR1 can increase or decrease channel activity, or induce a reduction in the amount of protein. The consequences of a single mutation are sometimes multiple and the analysis of the functional effects is complex.

View Article and Find Full Text PDF

Dent-2 disease and Lowe syndrome are two pathologies caused by mutations in inositol polyphosphate 5-phosphatase OCRL gene. Both conditions share proximal tubulopathy evolving to chronic kidney failure. Lowe syndrome is in addition defined by a bilateral congenital cataract, intellectual disability, and hypotonia.

View Article and Find Full Text PDF

Structural microtubule associated proteins (MAPs) stabilize microtubules, a property that was thought to be essential for development, maintenance and function of neuronal circuits. However, deletion of the structural MAPs in mice does not lead to major neurodevelopment defects. Here we demonstrate a role for MAP6 in brain wiring that is independent of microtubule binding.

View Article and Find Full Text PDF

MAP6 proteins (MAP6s), which include MAP6-N (also called Stable Tubule Only Polypeptide, or STOP) and MAP6d1 (MAP6 domain-containing protein 1, also called STOP-Like protein 21 kD, or SL21), bind to and stabilize microtubules. MAP6 deletion in mice severely alters integrated brain functions and is associated with synaptic defects, suggesting that MAP6s may also have alternative cellular roles. MAP6s reportedly associate with the Golgi apparatus through palmitoylation of their N-terminal domain, and specific isoforms have been shown to bind actin.

View Article and Find Full Text PDF

Neurons are sensitive to topographical cues provided either by in vivo or in vitro environments on the micrometric scale. We have explored the role of randomly distributed silicon nanopillars on primary hippocampal neurite elongation and axonal differentiation. We observed that neurons adhere on the upper part of nanopillars with a typical distance between adhesion points of about 500 nm.

View Article and Find Full Text PDF