Publications by authors named "Broc Smith"

Our prior discovery of a novel biexponential photochemical ring-opening in 7-dehydrocholesterol (DHC) to previtamin D3 [ Tang J. Chem. Phys.

View Article and Find Full Text PDF

The excited and ground state dynamics of a series of 1,3-cyclohexadiene derivatives and their hexatriene photoproducts are studied using ultrafast broadband UV-visible transient absorption spectroscopy. The substitution pattern around the cyclohexadiene backbone alters the excited state potential energy surface in the Franck-Condon region as evidenced by changes in the excited state absorption and fluorescence properties of the systems. Unsubstituted 1,3-cyclohexadiene and alpha-phellandrene exhibit no excited state absorption while a strong excited state absorption in the visible spectral region is observed for both alpha-terpinene and Provitamin D3.

View Article and Find Full Text PDF

Ultrafast broadband UV-visible transient absorption spectroscopy is used to characterize the photochemistry of α-terpinene, a 1,4-disubstituted-1,3-cyclohexadiene natural product. These results are compared with experiments probing the analogous ring-opening reaction of 7-dehydrocholesterol (DHC, provitamin D3) and the subsequent relaxation of previtamin D3. The major experimental results are as follows: (1) Like DHC, but unlike 1,3-cyclohexadiene, α-terpinene exhibits a broad excited state absorption (ESA) spectrum in the visible.

View Article and Find Full Text PDF

Time-resolved transient absorption spectroscopy was used to investigate the primary geminate recombination and cage escape of alkyl radicals in solution over a temperature range from 0 to 80 degrees C. Radical pairs were produced by photoexcitation of methyl, ethyl, propyl, hexylnitrile, and adenosylcobalamin in water, ethylene glycol, mixtures of water and ethylene glycol, and sucrose solutions. In contrast to previous studies of cage escape and geminate recombination, these experiments demonstrate that cage escape for these radical pairs occurs on time scales ranging from a hundred picoseconds to over a nanosecond as a function of solvent fluidity and radical size.

View Article and Find Full Text PDF