Articular cartilage (AC) is a specialized connective tissue that covers the ends of long bones and facilitates the load-bearing of joints. It consists of chondrocytes distributed throughout an extracellular matrix and organized into three zones: superficial, middle, and deep. Nuclear magnetic resonance (NMR) techniques can be used to characterize this layered structure.
View Article and Find Full Text PDFModern visual perception techniques often rely on multiple heterogeneous sensors to achieve accurate and robust estimates. Knowledge of their relative positions is a mandatory prerequisite to accomplish sensor fusion. Typically, this result is obtained through a calibration procedure that correlates the sensors' measurements.
View Article and Find Full Text PDFMagnetic resonance fingerprinting (MRF) is a rapidly developing approach for fast quantitative MRI. A typical drawback of dictionary-based MRF is an explosion of the dictionary size as a function of the number of reconstructed parameters, according to the "curse of dimensionality", which determines an explosion of resource requirements. Neural networks (NNs) have been proposed as a feasible alternative, but this approach is still in its infancy.
View Article and Find Full Text PDFThis study investigates the effects of long-term exposure to OA on skeletal parameters of four tropical zooxanthellate corals naturally living at CO seeps and adjacent control sites from two locations (Dobu and Upa Upasina) in the Papua New Guinea underwater volcanic vent system. The seeps are characterized by seawater pH values ranging from 8.0 to about 7.
View Article and Find Full Text PDFMany efforts have been carried out for the standardization of multiparametric Magnetic Resonance (mp-MR) images evaluation to detect Prostate Cancer (PCa), and specifically to differentiate levels of aggressiveness, a crucial aspect for clinical decision-making. Prostate Imaging-Reporting and Data System (PI-RADS) has contributed noteworthily to this aim. Nevertheless, as pointed out by the European Association of Urology (EAU 2020), the PI-RADS still has limitations mainly due to the moderate inter-reader reproducibility of mp-MRI.
View Article and Find Full Text PDFMR fingerprinting (MRF) is an innovative approach to quantitative MRI. A typical disadvantage of dictionary-based MRF is the explosive growth of the dictionary as a function of the number of reconstructed parameters, an instance of the curse of dimensionality, which determines an explosion of resource requirements. In this work, we describe a deep learning approach for MRF parameter map reconstruction using a fully connected architecture.
View Article and Find Full Text PDFNuclear Magnetic Resonance (NMR) is a well-suited methodology to study bone composition and structural properties. This is because the NMR parameters, such as the T2 relaxation time, are sensitive to the chemical and physical environment of the H nuclei. Although magnetic resonance imaging (MRI) allows bone structure assessment in vivo, its cost limits the suitability of conventional MRI for routine bone screening.
View Article and Find Full Text PDFMelanopsin retinal ganglion cells (mRGCs) are intrinsically photosensitive photoreceptors contributing both to image and non-image-forming (NIF) functions of the eye. They convey light signal to the brain to modulate circadian entrainment, sleep, alertness, cognition, brightness perception and coarse vision. Given that rods and cones also contribute to all these impacts of light, isolating mRGC visual and NIF roles in humans is challenging so that mRGC functions remains to be fully characterized.
View Article and Find Full Text PDFPurpose: Single-sided H-NMR is proposed for the estimation of morphological parameters of trabecular bone, and potentially the detection of pathophysiological alterations of bone structure. In this study, a new methodology was used to estimate such parameters without using an external reference signal, and to study intratrabecular and intertrabecular porosities, with a view to eventually scanning patients.
Methods: Animal trabecular bone samples were analyzed by a single-sided device.
Paintings on canvas are complex structures created by superimposing layers of different composition. Investigations on the structure of these artworks can provide essential information on their state of conservation, pictorial technique, possible overpaintings, and in planning a proper conservation plan. Standard methods of investigation consist in sampling a limited number of fragments for stratigraphic analyses.
View Article and Find Full Text PDFThe changes in the surface wettability of many materials are receiving increased attention in recent years. It is not too hard to fabricate resistant hydrophobic surfaces through products bearing both hydrophobic and reactive hydrophilic end groups. More challenging is obtaining resistant nonwetting surfaces through noncovalent reversible bonds.
View Article and Find Full Text PDFPurpose: Reduced bone strength is associated with a loss of bone mass, usually evaluated by dual-energy X-ray absorptiometry, although it is known that the bone microstructure also affects the bone strength. Here, a method is proposed to measure (in laboratory) the bone volume-to-total volume ratio by single-sided NMR scanners, which is related to the microstructure of the trabecular bone.
Methods: Three single-sided scanners were used on animal bone samples.
Organisms that accumulate calcium carbonate structures are particularly vulnerable to ocean warming (OW) and ocean acidification (OA), potentially reducing the socioeconomic benefits of ecosystems reliant on these taxa. Since rising atmospheric CO is responsible for global warming and increasing ocean acidity, to correctly predict how OW and OA will affect marine organisms, their possible interactive effects must be assessed. Here we investigate, in the field, the combined temperature (range: 16-26 °C) and acidification (range: pH 8.
View Article and Find Full Text PDFPhenotype can express different morphologies in response to biotic or abiotic environmental influences. Mollusks are particularly sensitive to different environmental parameters, showing macroscale shell morphology variations in response to environmental parameters. Few studies concern shell variations at the different scale levels along environmental gradients.
View Article and Find Full Text PDFCement hydration occurs when water is added to cement powder, leading to the formation of crystalline products like Portlandite and the quasi-amorphous, poorly crystalline, calcium silicate hydrate (C-S-H) gel. Despite its importance in determining the final properties of the cement, many models exist for the nano and sub-nano level organization of this "liquid stone." (1)H NMR relaxometry in White Portland Cement paste during hydration allowed us to monitor the formation and evolution of the multiscale porosity of the cement, with the formation of structures at nano and sub-nano levels of C-S-H gel (calcium silicate interlayer water, water in small and large gel pores) along with three low-mobility (1)H pools, identified as (1)H nuclei in C-S-H layers, likely belonging to OH groups, with (1)H nuclei in Portlandite, and in crystal water of Ettringite.
View Article and Find Full Text PDFMediterranean corals are a natural model for studying global warming, as the Mediterranean basin is expected to be one of the most affected regions and the increase in temperature is one of the greatest threats for coral survival. We have analyzed for the first time with time-domain nuclear magnetic resonance (TD-NMR) the porosity and pore-space structure, important aspects of coral skeletons, of two scleractinian corals, Balanophyllia europaea (zooxanthellate) and Leptopsammia pruvoti (nonzooxanthellate), taken from three different sites on the western Italian coast along a temperature gradient. Comparisons have been made with mercury intrusion porosimetry and scanning electron microscopy images.
View Article and Find Full Text PDF