Publications by authors named "Brivanlou A"

Cells from all kingdoms of life can enter growth arrest in unfavorable environmental conditions. Key to this process are mechanisms enabling recovery from this state. Staphylococcal type III-A CRISPR-Cas loci encode the Cas10 complex that uses a guide RNA to locate complementary viral transcripts and start an immune response.

View Article and Find Full Text PDF

The human mitochondrial genome encodes crucial oxidative phosphorylation system proteins, pivotal for aerobic energy transduction. They are translated from nine monocistronic and two bicistronic transcripts whose native structures remain unexplored, posing a gap in understanding mitochondrial gene expression. In this work, we devised the mitochondrial dimethyl sulfate mutational profiling with sequencing (mitoDMS-MaPseq) method and applied detection of RNA folding ensembles using expectation-maximization (DREEM) clustering to unravel the native mitochondrial messenger RNA (mt-mRNA) structurome in wild-type (WT) and leucine-rich pentatricopeptide repeat-containing protein (LRPPRC)-deficient cells.

View Article and Find Full Text PDF

Purpose: The common marmoset (Callithrix jacchus) provides an ideal model to study early development of primates, and an in vivo platform to validate conclusions from in vitro studies of human embryos and embryo models. Currently, however, no established staging atlas of marmoset embryonic development exists. Using high-resolution, longitudinal ultrasound scans on live pregnant marmosets, we present the first dynamic in vivo imaging of entire primate gestation beginning with attachment until the last day before birth.

View Article and Find Full Text PDF

A hallmark of CRISPR immunity is the acquisition of short viral DNA sequences, known as spacers, that are transcribed into guide RNAs to recognize complementary sequences. The staphylococcal type III-A CRISPR-Cas system uses guide RNAs to locate viral transcripts and start a response that displays two mechanisms of immunity. When immunity is triggered by an early-expressed phage RNA, degradation of viral ssDNA can cure the host from infection.

View Article and Find Full Text PDF

While studied extensively in model systems, human gastrulation remains obscure. The scarcity of fetal biological material as well as ethical considerations limit our understanding of this process. In vitro attachment of natural blastocysts shed light on aspects of the second week of human development in the absence of the morphological manifestation of gastrulation.

View Article and Find Full Text PDF

The mammalian mitochondrial genome encodes thirteen oxidative phosphorylation system proteins, crucial in aerobic energy transduction. These proteins are translated from 9 monocistronic and 2 bicistronic transcripts, whose native structures remain unexplored, leaving fundamental molecular determinants of mitochondrial gene expression unknown. To address this gap, we developed a mitoDMS-MaPseq approach and used DREEM clustering to resolve the native human mitochondrial mt-mRNA structurome.

View Article and Find Full Text PDF

Huntington's disease (HD) remains an incurable and fatal neurodegenerative disease long after CAG-expansion mutation in the huntingtin gene () was identified as the cause. The underlying pathological mechanism, whether loss of function or gain of toxicity results from mutation, remains a matter of debate. In this study, we genetically modulated wild-type or mutant expression levels in isogenic human embryonic stem cells to systematically investigate their contribution to HD-specific phenotypes.

View Article and Find Full Text PDF

Although lung disease is the primary clinical outcome in COVID-19 patients, how SARS-CoV-2 induces lung pathology remains elusive. Here we describe a high-throughput platform to generate self-organizing and commensurate human lung buds derived from hESCs cultured on micropatterned substrates. Lung buds resemble human fetal lungs and display proximodistal patterning of alveolar and airway tissue directed by KGF.

View Article and Find Full Text PDF

RNA viruses are diverse and abundant pathogens that are responsible for numerous human diseases. RNA viruses possess relatively compact genomes and have therefore evolved multiple mechanisms to maximize their coding capacities, often by encoding overlapping reading frames. These reading frames are then decoded by mechanisms such as alternative splicing and ribosomal frameshifting to produce multiple distinct proteins.

View Article and Find Full Text PDF

Organoids are carrying the promise of modeling complex disease phenotypes and serving as a powerful basis for unbiased drug screens, potentially offering a more efficient drug-discovery route. However, unsolved technical bottlenecks of reproducibility and scalability have prevented the use of current organoids for high-throughput screening. Here, we present a method that overcomes these limitations by using deep-learning-driven analysis for phenotypic drug screens based on highly standardized micropattern-based neural organoids.

View Article and Find Full Text PDF

Embryogenesis is guided by a limited set of signaling pathways dynamically expressed in different places. How a context-dependent signaling response is generated has been a central question of developmental biology, which can now be addressed with in vitro models of human embryos that are derived from embryonic stem cells (hESCs). Our previous work demonstrated that during early stages of hESC differentiation, cells chronicle signaling hierarchy.

View Article and Find Full Text PDF

Our knowledge of the molecular mechanisms surrounding human embryo implantation and gastrulation is lacking, largely due to technical and ethical limitations of experimenting with human embryos. Alternatives to human embryos have been reported, in which 3D clusters of embryonic stem cells are differentiated in a stepwise manner to model aspects of human embryogenesis. Yet it remains challenging to model the events past attachment.

View Article and Find Full Text PDF

RNA structures play critical roles in regulating gene expression across all domains of life and viruses. Chemical probing methods coupled with massively parallel sequencing have revolutionized the RNA structure field by enabling the assessment of many structures in their native, physiological context. Previously, we developed Dimethyl-Sulfate-based Mutational Profiling and Sequencing (DMS-MaPseq), which uses DMS to label the Watson-Crick face of open and accessible adenine and cytosine bases in the RNA.

View Article and Find Full Text PDF

The Hippo pathway, a highly conserved signaling cascade that functions as an integrator of molecular signals and biophysical states, ultimately impinges upon the transcription coactivator Yes-associated protein 1 (YAP). Hippo-YAP signaling has been shown to play key roles both at the early embryonic stages of implantation and gastrulation, and later during neurogenesis. To explore YAP's potential role in neurulation, we used self-organizing neuruloids grown from human embryonic stem cells on micropatterned substrates.

View Article and Find Full Text PDF

Organizing centers secrete morphogens that specify the emergence of germ layers and the establishment of the body's axes during embryogenesis. While traditional experimental embryology tools have been instrumental in dissecting the molecular aspects of organizers in model systems, they are impractical in human in-vitro model systems to dissect the relationships between signaling and fate along embryonic coordinates. To systematically study human embryonic organizer centers, we devised a collection of optogenetic ePiggyBac vectors to express a photoactivatable Cre-loxP recombinase, that allows the systematic induction of organizer structures by shining blue-light on human embryonic stem cells (hESCs).

View Article and Find Full Text PDF

Embryonic cells grow in environments that provide a plethora of physical cues, including mechanical forces that shape the development of the entire embryo. Despite their prevalence, the role of these forces in embryonic development and their integration with chemical signals have been mostly neglected, and scrutiny in modern molecular embryology tilted, instead, towards the dissection of molecular pathways involved in cell fate determination and patterning. It is now possible to investigate how mechanical signals induce downstream genetic regulatory networks to regulate key developmental processes in the embryo.

View Article and Find Full Text PDF

Huntington's disease (HD) is a fatal neurodegenerative disorder caused by an expansion of the CAG repeats in the huntingtin gene (HTT). Although HD has been shown to have a developmental component, how early during human embryogenesis the HTT-CAG expansion can cause embryonic defects remains unknown. Here, we demonstrate a specific and highly reproducible CAG length-dependent phenotypic signature in a synthetic model for human gastrulation derived from human embryonic stem cells (hESCs).

View Article and Find Full Text PDF
Article Synopsis
  • - The study of human development satisfies our curiosity about our origins and has a distinct role in scientific research.
  • - This Comment reviews advancements in understanding human development made in the last decade, highlighting basic research and clinical applications.
  • - Ethical considerations surrounding human development research are also explored, emphasizing the importance of responsible scientific inquiry.
View Article and Find Full Text PDF

In the next 10 years, the continued exploration of human embryology holds promise to revolutionize regenerative and reproductive medicine with important societal consequences. In this Comment we speculate on the evolution of recent advances made and describe emerging technologies for basic research, their potential clinical applications, and, importantly, the ethical frameworks in which they must be considered.

View Article and Find Full Text PDF

Recent advances in human naive pluripotent stem cell culture have demonstrated their ability to generate trophectoderm and descendant trophoblast cell types. Moreover, the same cells when cultured in three-dimensional configurations self-organize to generate blastocyst-like structures called blastoids. These discoveries represent a major step forward in modeling early human embryonic development.

View Article and Find Full Text PDF

Using self-organizing human models of gastrulation, we previously showed that (1) BMP4 initiates the cascade of events leading to gastrulation, (2) BMP4 signal reception is restricted to the basolateral domain, and (3) in a human-specific manner, BMP4 directly induces the expression of NOGGIN. Here, we report the surprising discovery that in human epiblasts, NOGGIN and BMP4 were secreted into opposite extracellular spaces. Interestingly, apically presented NOGGIN could inhibit basally delivered BMP4.

View Article and Find Full Text PDF
Article Synopsis
  • - The International Society for Stem Cell Research has updated its Guidelines for Stem Cell Research to reflect recent advancements in the field and related ethical, social, and policy issues since 2016.
  • - Despite the updates, the core principles of the Guidelines remain unchanged, ensuring they continue to serve as a standard reference for various stakeholders, including scientists, regulators, and patients.
  • - The document includes a summary of key updates and issues that have emerged in the evolving landscape of stem cell science and its implications for society.
View Article and Find Full Text PDF

The ISSCR Guidelines for Stem Cell Research and Clinical Translation were last revised in 2016. Since then, rapid progress has been made in research areas related to in vitro culture of human embryos, creation of stem cell-based embryo models, and in vitro gametogenesis. Therefore, a working group of international experts was convened to review the oversight process and provide an update to the guidelines.

View Article and Find Full Text PDF

Chromosomal instability leading to aneuploidy is pervasive in early human embryos and is considered as a major cause of infertility and pregnancy wastage. Here we provide several lines of evidence that blastocysts containing aneuploid cells are worthy of in vitro fertilization transfer. First, we show clinically that aneuploid embryos can lead to healthy births, suggesting the presence of an in vivo mechanism to eliminate aneuploidy.

View Article and Find Full Text PDF