Neuroinflammation coupled with demyelination and neuro-axonal damage in the central nervous system (CNS) contribute to disease advancement in progressive multiple sclerosis (P-MS). Inflammasome activation accompanied by proteolytic cleavage of gasdermin D (GSDMD) results in cellular hyperactivation and lytic death. Using multiple experimental platforms, we investigated the actions of GSDMD within the CNS and its contributions to P-MS.
View Article and Find Full Text PDFMultiple sclerosis (MS) is a progressive and inflammatory demyelinating disease of the CNS. Peroxisomes perform critical functions that contribute to CNS homeostasis. We investigated peroxisome injury and mitigating effects of peroxisome-restorative therapy on inflammatory demyelination in models of MS.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
November 2019
Pancreatic islets adapt to the increase in insulin demand during pregnancy by upregulating β-cell number, insulin synthesis, and secretion. These changes require prolactin receptor (PrlR) signaling, as mice with PrlR deletion are glucose intolerant with a lower β-cell mass. Prolactin also prevents β-cell apoptosis.
View Article and Find Full Text PDF