Macrophage metabolic plasticity is central to inflammatory programming, yet mechanisms of coordinating metabolic and inflammatory programs during infection are poorly defined. Here, we show that type I interferon (IFN) temporally guides metabolic control of inflammation during methicillin-resistant Staphylococcus aureus (MRSA) infection. We find that staggered Toll-like receptor and type I IFN signaling in macrophages permit a transient energetic state of combined oxidative phosphorylation (OXPHOS) and aerobic glycolysis followed by inducible nitric oxide synthase (iNOS)-mediated OXPHOS disruption.
View Article and Find Full Text PDFWhile the canonical function of IRE1α is to detect misfolded proteins and activate the unfolded protein response (UPR) to maintain cellular homeostasis, microbial pathogens can also activate IRE1α, which modulates innate immunity and infection outcomes. However, how infection activates IRE1α and its associated inflammatory functions have not been fully elucidated. Recognition of microbe-associated molecular patterns can activate IRE1α, but it is unclear whether this depends on protein misfolding.
View Article and Find Full Text PDFMacrophage metabolic plasticity enables repurposing of electron transport from energy generation to inflammation and host defense. Altered respiratory complex II function has been implicated in cancer, diabetes, and inflammation, but regulatory mechanisms are incompletely understood. Here, we show that macrophage inflammatory activation triggers Complex II disassembly and succinate dehydrogenase subunit B loss through sequestration and selective mitophagy.
View Article and Find Full Text PDF