The RNA-dependent RNA polymerase from the Hepatitis C Virus (gene product NS5B) is a validated drug target because of its critical role in genome replication. There are at least four distinct allosteric sites on the polymerase to which several small molecule inhibitors bind. In addition, numerous crystal structures have been solved with different allosteric inhibitors bound to the polymerase.
View Article and Find Full Text PDFWe have performed high level quantum mechanical calculations for aminoethene and the three isomeric 1,1- ()- or ()-1,2-diaminoethenes as well as their singly and doubly charged cations derived by loss of electrons and/or upon protonation. Gas phase molecular structures were computed at the MP2/6-311+G(3df,2p) level. Standard molar enthalpies of formation in the gas phase, at = 298.
View Article and Find Full Text PDFThe RNA polymerase (gene product NS5B) from the hepatitis C virus is responsible for replication of the viral genome and is a validated drug target for new therapeutic agents. NS5B has a structure resembling an open right hand (containing the fingers, palm, and thumb subdomains), a hydrophobic C-terminal region, and two magnesium ions coordinated in the palm domain. Biochemical data suggest that the magnesium ions provide structural stability and are directly involved in catalysis, while the C-terminus plays a regulatory role in NS5B function.
View Article and Find Full Text PDFHepatitis C virus (HCV) has infected almost 200 million people worldwide, typically causing chronic liver damage and severe complications such as liver failure. Currently, there are few approved treatments for viral infection. Thus, the HCV RNA-dependent RNA polymerase (gene product NS5B) has emerged as an important target for small molecule therapeutics.
View Article and Find Full Text PDF