Objectives: Analyses of bone cross-sectional geometry are frequently used by anthropologists and paleontologists to infer the loading histories of past populations. To address some underlying assumptions, we investigated the relative roles of genetics and exercise on bone cross-sectional geometry and bending mechanics in three mouse strains: high bone density (C3H/He), low bone density (C57BL/6), and a high-runner strain homozygous for the Myh4 allele (MM).
Methods And Materials: Weanlings of each strain were divided into exercise (wheel) or control (sedentary) treatment groups for a 7-week experimental period.
During obesity, adipose tissue macrophages (ATMs) adopt a metabolically activated (MMe) phenotype. However, the functions of MMe macrophages are poorly understood. Here, we combine proteomic and functional methods to demonstrate that, in addition to potentiating inflammation, MMe macrophages promote dead adipocyte clearance through lysosomal exocytosis.
View Article and Find Full Text PDFAdipose tissue macrophage (ATM)-driven inflammation plays a key role in insulin resistance; however, factors activating ATMs are poorly understood. Using a proteomics approach, we show that markers of classical activation are absent on ATMs from obese humans but are readily detectable on airway macrophages of patients with cystic fibrosis, a disease associated with chronic bacterial infection. Moreover, treating macrophages with glucose, insulin, and palmitate-conditions characteristic of the metabolic syndrome-produces a "metabolically activated" phenotype distinct from classical activation.
View Article and Find Full Text PDFRationale: An increased cancer aggressiveness and mortality have been recently reported among patients with obstructive sleep apnea (OSA). Intermittent hypoxia (IH), a hallmark of OSA, enhances melanoma growth and metastasis in mice.
Objectives: To assess whether OSA-related adverse cancer outcomes occur via IH-induced changes in host immune responses, namely tumor-associated macrophages (TAMs).