Publications by authors named "Brittney Lacy"

The synergy between multiple compounds and other stressors, including heat, creates volatility and greater unpredictability than standard single-chemical toxicity testing, especially in the case of pesticides and metabolites which might contain several noxious ingredients resulting in adverse ecological effects. To address this, the aim of this study was to examine the dose- and time-dependent effects of low- and high-dose pesticide mixture (metalachlor, linuron, isoproturon, tebucanazole, aclonifen, atrazine, pendimethalin, azinphos-methyl) and heat stress co-exposure (22°C control/32°C treatment for 4-week) on free-swimming behaviors and cumulative actionless time (CAT) of goldfish. Behavioral analysis showed a dose- and time-dependent decrease in distance swam, as well as a subsequent increase in CAT.

View Article and Find Full Text PDF

One of many noteworthy consequences of increasing societal reliance on pesticides is their predominance in aquatic environments. These pernicious chemicals interact with high temperatures from global climate change, heat waves, and natural variations to create unstable environments that negatively impact organisms' health. To understand these conditions, we examined the dose-dependent effects of environmentally relevant pesticide mixtures (metolachlor, linuron, isoproturon, tebuconazole, aclonifen, atrazine, pendimethalin, and azinphos-methyl) combined with elevated temperatures (22 control vs.

View Article and Find Full Text PDF

In this study, we examined the dose-dependent effects of an environmentally relevant pesticide cocktail (metalachlor, linuron, isoproturon, tebucanazole, aclonifen, atrazine, pendimethalin, and azinphos-methyl) and temperature change (22 vs. 32 °C for 4-week exposure) on Na/K-ATPase, 3-nitrotyrosine protein (NTP), dinitrophenyl protein (DNP), catalase (CAT), and superoxide dismutase (SOD) expressions in gills of goldfish (Carassius auratus). Histopathological analysis showed widespread damage to gill in elevated temperature (32 °C) and pesticide co-exposure groups, including fusion of secondary lamellae, club-shaped primary lamellae, rupture of epithelial layer, loss of normal architecture, and hemorrhaging.

View Article and Find Full Text PDF

The marine environment is increasingly polluted by anthropogenic wastes, notably plastic debris. This debris breaks down into smaller pieces, known as microplastics. When consumed by marine organisms, microplastics cause various physiological effects.

View Article and Find Full Text PDF