Publications by authors named "Britteny Cassaidy"

With the emergence of SARS-CoV-2 and the continued emergence of new infectious diseases, there is a need to improve and expand current vaccine technology. Controlled-release subunit vaccines provide several benefits over current vaccines on the market, including the use of less antigen and fewer boost doses. Previously, our group reported molecules that alter NF-κB signaling improved the vaccine's performance and improved adjuvant-related tolerability.

View Article and Find Full Text PDF

Mineralization is a long-lasting method commonly used by biological materials to selectively strengthen in response to site specific mechanical stress. Achieving a similar form of toughening in synthetic polymer composites remains challenging. In previous work, we developed methods to promote chemical reactions via the piezoelectrochemical effect with mechanical responses of inorganic, ZnO nanoparticles.

View Article and Find Full Text PDF

Emerging diseases require generating new vaccines, which can often be time consuming. An alternate method to boost host defense is by inducing nonspecific innate immune memory, called trained immunity, to develop novel prophylactics. Many molecules, most notably β-glucan, induce trained immunity, but their effects are often short-lived and uncontrolled.

View Article and Find Full Text PDF

Adjuvants are added to vaccines to enhance the immune response and provide increased protection against disease. In the last decade, hundreds of synthetic immune adjuvants have been created, but many induce undesirable levels of proinflammatory cytokines including TNF-α and IL-6. Here we present small molecule NF-κB inhibitors that can be used in combination with an immune adjuvant to both decrease markers associated with poor tolerability and improve the protective response of vaccination.

View Article and Find Full Text PDF