Publications by authors named "Brittany Travers"

Introduction: Motor skill difficulties are common in autistic children and are related to daily living skills (DLS). However, it remains unclear which specific motor tasks are most likely to impact overall DLS. This study sought to fill this gap.

View Article and Find Full Text PDF

Introduction: Maximal grip strength, a measure of how much force a person's hand can generate when squeezing an object, may be an effective method for understanding potential neurobiological differences during motor tasks. Grip strength in autistic individuals may be of particular interest due to its unique developmental trajectory. While autism-specific differences in grip-brain relationships have been found in adult populations, it is possible that such differences in grip-brain relationships may be present at earlier ages when grip strength is behaviorally similar in autistic and non-autistic groups.

View Article and Find Full Text PDF

Attention-deficit/hyperactivity disorder (ADHD) commonly co-occurs in autistic children. However, additional research is needed to explore the differences in motor skills and sensory features in autistic children with and without ADHD, as well as the impacts of these factors on daily living skills (DLS). This observational study sought to fill this gap with 67 autistic children (6.

View Article and Find Full Text PDF

Although multiple theories have speculated about the brainstem reticular formation's involvement in autistic behaviors, the in vivo imaging of brainstem nuclei needed to test these theories has proven technologically challenging. Using methods to improve brainstem imaging in children, this study set out to elucidate the role of the autonomic, nociceptive, and limbic brainstem nuclei in the autism features of 145 children (74 autistic children, 6.0-10.

View Article and Find Full Text PDF

Background: ADHD polygenic scores (PGSs) have been previously shown to predict ADHD outcomes in several studies. However, ADHD PGSs are typically correlated with ADHD but not necessarily reflective of causal mechanisms. More research is needed to elucidate the neurobiological mechanisms underlying ADHD.

View Article and Find Full Text PDF

Maximal grip strength is associated with a variety of health-related outcome measures and thus may be reflective of the efficiency of foundational brain-body communication. Non-human primate models of grip strength strongly implicate the cortical lateral grasping network, but little is known about the translatability of these models to human children. Further, it is unclear how supplementary networks that provide proprioceptive information and cerebellar-based motor command modification are associated with maximal grip strength.

View Article and Find Full Text PDF

For over a hundred years, children's drawings have been used to assess children's intellectual, emotional, and physical development, characterizing children on the basis of intuitively derived checklists to identify the presence or absence of features within children's drawings. The current study investigates whether contemporary data science tools, including deep neural network models of vision and crowd-based similarity ratings, can reveal latent structure in human figure drawings beyond that captured by checklists, and whether such structure can aid in understanding aspects of the child's cognitive, perceptual, and motor competencies. We introduce three new metrics derived from innovations in machine vision and crowd-sourcing of human judgments and show that they capture a wealth of information about the participant beyond that expressed by standard measures, including age, gender, motor abilities, personal/social behaviors, and communicative skills.

View Article and Find Full Text PDF

Background: Autism spectrum disorder (ASD) is a complex neurodevelopmental condition. Understanding the brain's microstructure and its relationship to clinical characteristics is important to advance our understanding of the neural supports underlying ASD. In the current work, we implemented Gray-Matter Based Spatial Statistics (GBSS) to examine and characterize cortical microstructure and assess differences between typically developing (TD) and autistic males.

View Article and Find Full Text PDF

Background: Elevated or reduced responses to sensory stimuli, known as sensory features, are common in autistic individuals and often impact quality of life. Little is known about the neurobiological basis of sensory features in autistic children. However, the brainstem may offer critical insights as it has been associated with both basic sensory processing and core features of autism.

View Article and Find Full Text PDF
Article Synopsis
  • The cerebellum plays a crucial role in regulating human gait, affecting posture, timing of muscle activity, and coordination, with deficits leading to conditions like ataxia and increased fall risk.
  • Cerebellar disorders can disrupt balance and gait due to neurodegeneration, with technologies like accelerometers and Kinect being utilized for assessing gait and developing deep learning methods for better diagnosis.
  • Interventions such as coordinative training are being explored to improve locomotor adaptation in individuals with cerebellar conditions.
View Article and Find Full Text PDF

Diffusion-weighted magnetic resonance imaging (dMRI) of the brainstem is technically challenging, especially in young autistic children as nearby tissue-air interfaces and motion (voluntary and physiological) can lead to artifacts. This limits the availability of high-resolution images, which are desirable for improving the ability to study brainstem structures. Furthermore, inherently low signal-to-noise ratios, geometric distortions, and sensitivity to motion not related to molecular diffusion have resulted in limited techniques for high-resolution data acquisition compared to other modalities such as T1-weighted imaging.

View Article and Find Full Text PDF

Importance: Motor and sensory challenges are commonly reported among autistic individuals and have been linked to challenges with daily living skills (DLS). To best inform clinical intervention, greater specificity in how sensory and motor challenges relate to DLS is needed.

Objective: To evaluate the relationship between combined sensory and motor scores and DLS performance among autistic and nonautistic children and to explore associations between motor scores and performance on specific DLS items.

View Article and Find Full Text PDF

Importance: Quality of life (QoL) is a core outcome of occupational therapy, but it is decreased among autistic adolescents and adults. This is the first review of QoL from an occupational therapy standpoint.

Objective: To identify self-reported QoL differences between autistic and nonautistic samples; investigate sex differences in QoL among autistic people; examine consistency in QoL among autistic people across age, intellectual disability (ID), and self- versus proxy-report method; and appraise occupational therapy-related interventions addressing QoL among autistic people.

View Article and Find Full Text PDF
Article Synopsis
  • Local genetic correlation measures the genetic similarity of complex traits in specific genomic areas, but estimating it accurately is difficult due to overlapping genetic factors and study samples.
  • The paper introduces a new method called SUPERGNOVA, which uses summary statistics from genome-wide association studies to better estimate local genetic correlations.
  • SUPERGNOVA proves to be more effective than existing methods, revealing insights like the intricate genetic relationship between autism spectrum disorder and cognitive performance through two different genetic influences.
View Article and Find Full Text PDF

A test-retest study of FreeSurfer derived cortical thickness, cortical surface area, and cortical volume, as well as quantitative R1 relaxometry assessed on the midpoint of the cortex, was performed on a cohort of pediatric subjects (6-12 years old) scanned without sedation using SNARE-MPnRAGE (self navigated retrospective motion corrected magnetization prepared with n rapid gradient echoes) imaging. Reliability was assessed with coefficients of variation (CoVs) and intraclass correlation coefficients (ICCs) and statistical tests were used to determine differences with and without SNARE motion correction. Comparison of the test-retest measures of SNARE-MPnRAGE with prospectively motion corrected PROMO MPRAGE were also performed.

View Article and Find Full Text PDF

The human brain has demonstrated the power to structurally change as a result of movement-based interventions. However, it is unclear whether these structural brain changes differ in autistic individuals compared to non-autistic individuals. The purpose of the present study was to pilot a randomized controlled trial to investigate brain, balance, autism symptom severity and daily living skill changes that result from a biofeedback-based balance intervention in autistic adolescents (13-17 years old).

View Article and Find Full Text PDF

Although diminished proficiency on tasks that require visual-motor integration (VMI) has been reported in individuals with autism spectrum disorder (ASD), very few studies have examined the association between VMI performance and neuroanatomical regions of interest (ROI) involved in motor and perceptual functioning. To address these issues, the current study included an all-male sample of 41 ASD (ages 3-23 years) and 27 typically developing (TD) participants (ages 5-26 years) who completed the Beery-Buktenica Developmental Test of Visual-Motor Integration (Beery VMI) as part of a comprehensive neuropsychological battery. All participants underwent 3.

View Article and Find Full Text PDF

Motor challenges are commonly reported in autism spectrum disorder (ASD). Yet, there is substantial heterogeneity in motor ability within ASD, and it is unknown what behavioral characteristics best explain individual differences in motor ability in ASD and related conditions. This observational study examined motor ability as a function of sensory features, attention deficit/hyperactivity symptoms, ASD symptoms, and IQ in 110 children with ASD, typical development, or an intermediate behavioral profile.

View Article and Find Full Text PDF

Individuals with autism spectrum disorder struggle with motor difficulties throughout the life span, and these motor difficulties may affect independent living skills and quality of life. Yet, we know little about how whole-body movement may distinguish individuals with autism spectrum disorder from individuals with typical development. In this study, kinematic and postural sway data were collected during multiple sessions of videogame play in 39 youth with autism spectrum disorder and 23 age-matched youth with typical development (ages 7-17 years).

View Article and Find Full Text PDF

Young children's growing access to touchscreen technology represents one of many contextual factors that may influence development. The focus of the current study was the impact of traditional versus electronic drawing materials on the quality of children's drawings during the preschool years. Young children (2-5 years, = 73) and a comparison group of adults ( = 24) copied shapes using three mediums: marker on paper, stylus on touchscreen tablet, finger on touchscreen tablet.

View Article and Find Full Text PDF

Background: Balance challenges are associated with not only the aging process but also a wide variety of psychiatric and neurological disorders. However, relatively little is known regarding the neural basis of balance and the effects of balance interventions on the brain.

Research Question: This review synthesizes the existing literature to answer the question: What are the key brain structures associated with balance?

Methods: This review examined 37 studies that assessed brain structures in relation to balance assessment or intervention.

View Article and Find Full Text PDF

Reaching and grasping (prehension) is one of the earliest developing motor skills in humans, but continued prehension development in childhood and adolescence enables the performance of increasingly complex manual tasks. In individuals with autism spectrum disorder (ASD) atypical unimanual reaching and grasping has been reported, but to date, no studies have investigated discrete bimanual movements. We examined unimanual and bimanual reach to grasp tasks in youth with ASD to better understand how motor performance might change with increasing complexity.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a neurodevelopmental condition that affects one in 59 children in the United States. Although there is a mounting body of knowledge of cortical and cerebellar contributions to ASD, our knowledge about the early developing brainstem in ASD is only beginning to accumulate. Understanding how brainstem neurotransmission is implicated in ASD is important because many of this condition's sensory and motor symptoms are consistent with brainstem pathology.

View Article and Find Full Text PDF