Publications by authors named "Brittany Sandoval"

Chemically induced proximity modalities such as targeted protein degradation (TPD) hold promise for expanding the number of proteins that can be manipulated pharmacologically. However, current TPD strategies are often limited to proteins with preexisting ligands. Molecular glues (e.

View Article and Find Full Text PDF

Molecular glues are proximity-inducing small molecules that have emerged as an attractive therapeutic approach. However, developing molecular glues remains challenging, requiring innovative mechanistic strategies to stabilize neoprotein interfaces and expedite discovery. Here we unveil a trans-labeling covalent molecular glue mechanism, termed 'template-assisted covalent modification'.

View Article and Find Full Text PDF

Small molecules that can induce protein degradation by inducing proximity between a desired target and an E3 ligase have the potential to greatly expand the number of proteins that can be manipulated pharmacologically. Current strategies for targeted protein degradation are mostly limited in their target scope to proteins with preexisting ligands. Alternate modalities such as molecular glues, as exemplified by the glutarimide class of ligands for the CUL4 ligase, have been mostly discovered serendipitously.

View Article and Find Full Text PDF
Article Synopsis
  • PPM1D is a phosphatase frequently activated in cancer, especially in therapy-related myeloid neoplasms, but its role in blood cell formation and tumor growth is not fully understood.
  • Research using conditional mouse models reveals that PPM1D is crucial for hematopoiesis by influencing the fitness and self-renewal of hematopoietic stem cells, and while it grants some resistance to chemotherapy, it's less effective than losing p53.
  • Loss of PPM1D makes leukemias more sensitive to chemotherapy, and inhibiting it may be beneficial across various cancers, suggesting that targeting PPM1D could be a promising new therapy for cancer treatment without major side effects in mice.
View Article and Find Full Text PDF
Article Synopsis
  • Nuclear hormone receptors (NRs) are important transcription factors that can be targeted for therapy, and their degradation is crucial for treating cancers linked to retinoic acid and estrogen receptors.
  • The study identifies UBR5 as a ubiquitin ligase responsible for degrading various agonist-bound NRs, including RARA and RXRA, and reveals structural insights into UBR5's interaction with these receptors.
  • The research shows that different ligands can affect the recruitment of coactivators and UBR5 to chromatin, thereby influencing the transcriptional regulation of NRs.
View Article and Find Full Text PDF

Small molecules that induce protein-protein interactions to exert proximity-driven pharmacology such as targeted protein degradation are a powerful class of therapeutics. Molecular glues are of particular interest given their favorable size and chemical properties and represent the only clinically approved degrader drugs. The discovery and development of molecular glues for novel targets, however, remains challenging.

View Article and Find Full Text PDF

Through the postpolymerization modification of poly(allyl glycidyl ether) (PAGE), a functionalizable polyether with a poly(ethylene oxide) backbone, we engineered a new class of highly tunable polyampholyte materials. These polyampholytes can be synthesized to have several useful properties, including low cytotoxicity and pH-responsive coacervate formation. In this study, we used PAGE-based polyampholytes (PAGE-PAs) for the cryopreservation of mammalian cell suspensions.

View Article and Find Full Text PDF

Targeted protein degradation is a rapidly advancing and expanding therapeutic approach. Drugs that degrade GSPT1 via the CRL4CRBN ubiquitin ligase are a new class of cancer therapy in active clinical development with evidence of activity against acute myeloid leukemia in early-phase trials. However, other than activation of the integrated stress response, the downstream effects of GSPT1 degradation leading to cell death are largely undefined, and no murine models are available to study these agents.

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) is associated with age and smoking, but other determinants of the disease are incompletely understood. Clonal hematopoiesis of indeterminate potential (CHIP) is a common, age-related state in which somatic mutations in clonal blood populations induce aberrant inflammatory responses. Patients with CHIP have an elevated risk for cardiovascular disease, but the association of CHIP with COPD remains unclear.

View Article and Find Full Text PDF