The antinoroviral effect of copper ions is well known, yet most of this work has previously been conducted in copper and copper alloy surfaces, not copper ions in solution. In this work, we characterized the effects that Cu ions have on human norovirus capsids' and surrogates' integrity to explain empirical data, indicating virus inactivation by copper alloy surfaces, and as means of developing novel metal ion-based virucides. Comparatively high concentrations of Cu(II) ions (>10 mM) had little effect on the infectivity of human norovirus surrogates, so we used sodium ascorbate as a reducing agent to generate unstable Cu(I) ions from solutions of copper bromide.
View Article and Find Full Text PDFHuman norovirus exacts considerable public health and economic losses worldwide. Emerging in vitro cultivation advances are not yet applicable for routine detection of the virus. The current detection and quantification techniques, which rely primarily on nucleic acid amplification, do not discriminate infectious from non-infectious viral particles.
View Article and Find Full Text PDFSoft Matter
November 2015
Understanding of the colloidal interactions of Norovirus particles in aqueous medium could provide insights on the origins of the notorious stability and infectivity of these widespread viral agents. We characterized the effects of solution pH and surfactant type and concentration on the aggregation, dispersion, and disassembly of Norovirus virus-like particles (VLPs) using dynamic light scattering, electrophoretic light scattering, and transmission electron microscopy. Owing to net negative surface charge of the VLPs at neutral pH, low concentrations of cationic surfactant tend to aggregate the VLPs, whereas low concentrations of anionic surfactant tend to disperse the particles.
View Article and Find Full Text PDF