Publications by authors named "Brittany R Magalis"

Molecular data analysis is invaluable in understanding the overall behavior of a rapidly spreading virus population when epidemiological surveillance is problematic. It is also particularly beneficial in describing subgroups within the population, often identified as clades within a phylogenetic tree that represent individuals connected via direct transmission or transmission via differing risk factors in viral spread. However, transmission patterns or viral dynamics within these smaller groups should not be expected to exhibit homogeneous behavior over time.

View Article and Find Full Text PDF

In human immunodeficiency virus (HIV) infection, virus replication in and adaptation to the central nervous system (CNS) can result in neurocognitive deficits in approximately 25% of patients with unsuppressed viremia. While no single viral mutation can be agreed upon as distinguishing the neuroadapted population, earlier studies have demonstrated that a machine learning (ML) approach could be applied to identify a collection of mutational signatures within the virus envelope glycoprotein (Gp120) predictive of disease. The S[imian]IV-infected macaque is a widely used animal model of HIV neuropathology, allowing in-depth tissue sampling infeasible for human patients.

View Article and Find Full Text PDF

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC) has raised questions regarding vaccine protection against SARS-CoV-2 infection, transmission, and ongoing virus evolution. Twenty-three mildly symptomatic "vaccination breakthrough" infections were identified as early as January 2021 in Alachua County, Florida, among individuals fully vaccinated with either the BNT162b2 (Pfizer) or the Ad26 (Janssen/J&J) vaccines. SARS-CoV-2 genomes were successfully generated for 11 of the vaccine breakthroughs, and 878 individuals in the surrounding area and were included for reference-based phylogenetic investigation.

View Article and Find Full Text PDF

After an initial wave of coronavirus disease 2019 (COVID-19) in Haiti in summer 2020 (primarily lineage B.1), seropositivity for anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunoglobulin G (IgG) was ~40%. Variant P.

View Article and Find Full Text PDF

Despite improvements in antiretroviral therapy, human immunodeficiency virus type 1 (HIV-1)-associated neurocognitive disorders (HAND) remain prevalent in subjects undergoing therapy. HAND significantly affects individuals' quality of life, as well as adherence to therapy, and, despite the increasing understanding of neuropathogenesis, no definitive diagnostic or prognostic marker has been identified. We investigated transcriptomic profiles in frontal cortex tissues of Simian immunodeficiency virus (SIV)-infected Rhesus macaques sacrificed at different stages of infection.

View Article and Find Full Text PDF

Although the global response to COVID-19 has not been entirely unified, the opportunity arises to assess the impact of regional public health interventions and to classify strategies according to their outcome. Analysis of genetic sequence data gathered over the course of the pandemic allows us to link the dynamics associated with networks of connected individuals with specific interventions. In this study, clusters of transmission were inferred from a phylogenetic tree representing the relationships of patient sequences sampled from December 30, 2019 to April 17, 2020.

View Article and Find Full Text PDF

A number of evolutionary hypotheses can be tested by comparing selective pressures among sets of branches in a phylogenetic tree. When the question of interest is to identify specific sites within genes that may be evolving differently, a common approach is to perform separate analyses on subsets of sequences and compare parameter estimates in a post hoc fashion. This approach is statistically suboptimal and not always applicable.

View Article and Find Full Text PDF

HYpothesis testing using PHYlogenies (HyPhy) is a scriptable, open-source package for fitting a broad range of evolutionary models to multiple sequence alignments, and for conducting subsequent parameter estimation and hypothesis testing, primarily in the maximum likelihood statistical framework. It has become a popular choice for characterizing various aspects of the evolutionary process: natural selection, evolutionary rates, recombination, and coevolution. The 2.

View Article and Find Full Text PDF

Natural selection is a fundamental force shaping organismal evolution, as it both maintains function and enables adaptation and innovation. Viruses, with their typically short and largely coding genomes, experience strong and diverse selective forces, sometimes acting on timescales that can be directly measured. These selection pressures emerge from an antagonistic interplay between rapidly changing fitness requirements (immune and antiviral responses from hosts, transmission between hosts, or colonization of new host species) and functional imperatives (the ability to infect hosts or host cells and replicate within hosts).

View Article and Find Full Text PDF

Background: Recent advances in high-throughput molecular epidemiology are transforming the analysis of viral infections.

Methods: Human immunodeficiency virus (HIV)-1 sequences from a Northern Californian cohort (NCC) of 4553 antiretroviral-naive individuals sampled between 1998 and 2016 were analyzed together with 140 000 previously published global sequences. The HIV-TRAnsmission Cluster Engine (HIV-TRACE) was used to infer a transmission network comprising links between NCC and previously published sequences having a genetic distance ≤1.

View Article and Find Full Text PDF

Hepatitis B virus disease progression in East Asia is most frequently associated with genotype C (HBV/C). The increasing availability of HBV/C genetic sequences and detailed annotations provides an opportunity to investigate the epidemiological factors underlying its evolutionary history. In this study, the Bayesian phylogeography framework was used to investigate the origins and patterns in spatial dissemination of HBV/C by analyzing East Asian sequences obtained from 1992 to 2010.

View Article and Find Full Text PDF

The evolution of viral pathogens is shaped by strong selective forces that are exerted during jumps to new hosts, confrontations with host immune responses and antiviral drugs, and numerous other processes. However, while undeniably strong and frequent, adaptive evolution is largely confined to small parts of information-packed viral genomes, and the majority of observed variation is effectively neutral. The predictions and implications of the neutral theory have proven immensely useful in this context, with applications spanning understanding within-host population structure, tracing the origins and spread of viral pathogens, predicting evolutionary dynamics, and modeling the emergence of drug resistance.

View Article and Find Full Text PDF