Publications by authors named "Brittany R Hanrahan"

Phosphorus (P) budgets can be useful tools for understanding nutrient cycling and quantifying the effectiveness of nutrient management planning and policies; however, uncertainties in agricultural nutrient budgets are not often quantitatively assessed. The objective of this study was to evaluate uncertainty in P fluxes (fertilizer/manure application, atmospheric deposition, irrigation, crop removal, surface runoff, and leachate) and the propagation of these uncertainties to annual P budgets. Data from 56 cropping systems in the P-FLUX database, which spans diverse rotations and landscapes across the United States and Canada, were evaluated.

View Article and Find Full Text PDF

Eutrophication due to elevated nitrogen (N) and phosphorus (P) loss from croplands remains one of the most pressing water quality issues throughout the world. Understanding the effect of implementing conservation management practices is critical for meeting nutrient reduction goals as well as informing conservation programs and policies. A before-after-control-impact (BACI) analysis was used to evaluate the individual and combined effect of cover crops and manure application rate on discharge and nutrient loss using six water years (WY2014-WY2019) of measured data across four distinct drainage zones (1X-NCC; 1X-CC; 2X-NCC; 2X-CC) within an Ohio, USA, crop production field.

View Article and Find Full Text PDF

Nutrient source has been the focus of much debate regarding the re-eutrophication of Lake Erie, despite that only 20% of nutrients applied to crops in the Western Lake Erie Basin (WLEB) originate from organic sources. However, limited data and assessments exist on the subsurface tile drainage water quality comparison between organic (liquid dairy manure) and commercial (mono-ammonium phosphate [MAP]) sources in crop production systems. Subsurface tile drainage, dissolved reactive phosphorus (DRP) and total phosphorus (TP) losses in tile drainage discharge following equal phosphorus (P) based applications of liquid dairy manure and MAP were assessed using a before-after control-impact design and 4 years of data from a paired field system located in northwest Ohio.

View Article and Find Full Text PDF

Excess phosphorus (P) from agriculture is a leading cause of harmful and nuisance algal blooms in many freshwater ecosystems. Throughout much of the midwestern United States, extensive networks of subsurface tile drains remove excess water from fields and allow for productive agriculture. This enhanced drainage also facilitates the transport of P, particularly soluble reactive phosphorus (SRP), to adjacent streams and ditches, with harmful consequences.

View Article and Find Full Text PDF

Nitrogen (N) and phosphorus (P) loss from crop production agriculture is transported to adjacent and downstream water bodies, resulting in negative environmental impacts including harmful and nuisance algal blooms. Cover crops are a conservation management practice that replaces bare soil with vegetation outside of the cash crop growing season, purportedly reducing N and P loss by increasing water and nutrient demand in agroecosystems. In this study, we compared nitrate (NO-N), total N (TN), dissolved reactive P (DRP), and total P (TP) loads in subsurface (tile) drainage and surface runoff from fields with cover crop management (CC) and fields without cover crop management (NoCC) using continuous monitoring data from 40 agricultural fields located throughout northcentral Ohio, United States (US).

View Article and Find Full Text PDF

The midwestern United States is a highly productive agricultural region, and extended crop-free periods in winter/spring can result in nitrogen (N) and phosphorus (P) losses to waterways that degrade downstream water quality. Planting winter cover crops can improve soil health while reducing nutrient leaching from farm fields during the fallow period. In this study, we used linear mixed effects models and multivariate statistics to determine the effect of cover crops on soil nutrients by comparing fields with cover crops (n = 9) versus those without (n = 6) in two Indiana agricultural watersheds: the Shatto Ditch Watershed, which had >60% of croppable acres in winter cover crops, and the Kirkpatrick Ditch Watershed, which had ∼20%.

View Article and Find Full Text PDF

The magnitude of nitrogen (N) and phosphorus (P) exported from agricultural fields via subsurface tile drainage systems is determined by site-specific interactions between weather, soil, field, and management characteristics. Here, we used multiple regression analyses to evaluate the influence of 29 controls of precipitation event-driven discharge, nitrate (NO-N) load, and dissolved reactive P (DRP) load from subsurface tile drains, leveraging a unique dataset of ~7000 precipitation events observed across 40 agricultural fields (n = 190 site years) instrumented to collect continuous water quality samples. We calculated marginal effects of significant controls and assessed the modifying influence of event rainfall, duration, and intensity, and antecedent precipitation.

View Article and Find Full Text PDF

Legacy phosphorus (P) in agricultural soils can be transported to surface waters via runoff and tile drainage, where it contributes to the development of harmful and nuisance algal blooms and hypoxia. However, a limited understanding of legacy P loss dynamics impedes the identification of mitigation strategies. Edge-of-field data from 41 agricultural fields in northwestern Ohio, USA, were used to develop regressions between legacy P concentrations (C) and discharge (Q) for two P fractions: total P (TP) and dissolved reactive P (DRP).

View Article and Find Full Text PDF

The increasing use of environmental DNA (eDNA) for determination of species presence in aquatic ecosystems is an invaluable technique for both ecology as a field and for the management of aquatic ecosystems. We examined the degradation dynamics of fish eDNA using an experimental array of recirculating streams, also using a "nested" primer assay to estimate degradation among eDNA fragment sizes. We introduced eDNA into streams with a range of water velocities (0.

View Article and Find Full Text PDF