: Preclinical studies reveal that the microbiome broadly affects immune responses and deposition and/or clearance of amyloid-beta (Aβ) in mouse models of Alzheimer's disease (AD). Whether the microbiome shapes central and peripheral immune profiles in AD models remains unknown. : We examined adaptive immune responses in two mouse models containing AD- related genetic predispositions (3xTg and 5xFAD) in the presence or absence of the microbiome.
View Article and Find Full Text PDFAlterations in gut microbial composition and function have been linked to numerous diseases. Identifying microbial pathways responsible for producing molecules that adversely impact the host is an important first step in the development of therapeutic interventions. Here, we first use large-scale clinical observations to link blood levels of defined microbial products to cardiovascular disease risks.
View Article and Find Full Text PDFAutism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by heterogeneous cognitive, behavioral and communication impairments. Disruption of the gut-brain axis (GBA) has been implicated in ASD although with limited reproducibility across studies. In this study, we developed a Bayesian differential ranking algorithm to identify ASD-associated molecular and taxa profiles across 10 cross-sectional microbiome datasets and 15 other datasets, including dietary patterns, metabolomics, cytokine profiles and human brain gene expression profiles.
View Article and Find Full Text PDFEpidemiological evidence implicates severe maternal infections as risk factors for neurodevelopmental disorders, such as ASD and schizophrenia. Accordingly, animal models mimicking infection during pregnancy, including the maternal immune activation (MIA) model, result in offspring with neurobiological, behavioral, and metabolic phenotypes relevant to human neurodevelopmental disorders. Most of these studies have been performed in rodents.
View Article and Find Full Text PDFAutism spectrum disorder (ASD) is defined by hallmark behaviors involving reduced communication and social interaction as well as repetitive activities and restricted interests. ASD represents a broad spectrum, from minimally affected individuals to those requiring intense support, with additional manifestations often including anxiety, irritability/aggression and altered sensory processing. Gastrointestinal (GI) issues are also common in ASD, and studies have identified changes in the gut microbiome of individuals with ASD compared to control populations, complementing recent findings of differences in gut-derived metabolites in feces and circulation.
View Article and Find Full Text PDFIntegration of sensory and molecular inputs from the environment shapes animal behaviour. A major site of exposure to environmental molecules is the gastrointestinal tract, in which dietary components are chemically transformed by the microbiota and gut-derived metabolites are disseminated to all organs, including the brain. In mice, the gut microbiota impacts behaviour, modulates neurotransmitter production in the gut and brain, and influences brain development and myelination patterns.
View Article and Find Full Text PDFSocial interactions among animals mediate essential behaviours, including mating, nurturing, and defence. The gut microbiota contribute to social activity in mice, but the gut-brain connections that regulate this complex behaviour and its underlying neural basis are unclear. Here we show that the microbiome modulates neuronal activity in specific brain regions of male mice to regulate canonical stress responses and social behaviours.
View Article and Find Full Text PDFBackground: Autism spectrum disorder (ASD) is a neurodevelopmental condition with hallmark behavioral manifestations including impaired social communication and restricted repetitive behavior. In addition, many affected individuals display metabolic imbalances, immune dysregulation, gastrointestinal dysfunction, and altered gut microbiome compositions.
Methods: We sought to better understand nonbehavioral features of ASD by determining molecular signatures in peripheral tissues through mass spectrometry methods (ultrahigh performance liquid chromatography-tandem mass spectrometry) with broad panels of identified metabolites.
Nat Rev Neurosci
December 2020
Mounting evidence suggests that the gut microbiome impacts brain development and function. Gut-brain connections may be mediated by an assortment of microbial molecules that are produced in the gastrointestinal tract, which can subsequently permeate many organs, including sometimes the brain. Studies in animal models have identified molecular cues propagated from intestinal bacteria to the brain that can affect neurological function and/or neurodevelopmental and neurodegenerative conditions.
View Article and Find Full Text PDFAmyloids are a class of protein with unique self-aggregation properties, and their aberrant accumulation can lead to cellular dysfunctions associated with neurodegenerative diseases. While genetic and environmental factors can influence amyloid formation, molecular triggers and/or facilitators are not well defined. Growing evidence suggests that non-identical amyloid proteins may accelerate reciprocal amyloid aggregation in a prion-like fashion.
View Article and Find Full Text PDFSocial impairment is one of the major symptoms in multiple psychiatric disorders, including autism spectrum disorder (ASD). Accumulated studies indicate a crucial role for the gut microbiota in social development, but these mechanisms remain unclear. This review focuses on two strategies adopted to elucidate the complicated relationship between gut bacteria and host social behavior.
View Article and Find Full Text PDFHow do bacteria regulate their cellular physiology in response to starvation? Here, we present a detailed characterization of Escherichia coli growth and starvation over a time-course lasting two weeks. We have measured multiple cellular components, including RNA and proteins at deep genomic coverage, as well as lipid modifications and flux through central metabolism. Our study focuses on the physiological response of E.
View Article and Find Full Text PDFRe-modelling of lipopolysaccharides, which are the primary constituent of the outer cell membrane of Gram-negative bacteria, modulates pathogenesis and resistance to microbials. Reported herein is the characterization of intact Gram-negative bacterial lipooligosaccharides (LOS) via a new strategy utilizing online liquid chromatography (LC) coupled with ultraviolet photodissociation (UVPD) mass spectrometry. Compared to collision-based MS/MS methods, UVPD and UVPD/HCD promoted a greater array of cleavages within both the glycan and lipid moieties, including C-C, C-N, C-O cleavages in the acyl chains as well as glycosidic and cross-ring cleavages, thus providing the most far-reaching structural characterization of LOS.
View Article and Find Full Text PDFThe Vps/VacJ ABC transporter system is proposed to function in maintaining the lipid asymmetry of the outer membrane. Mutations in vps or vacJ in Shigella flexneri resulted in increased sensitivity to lysis by the detergent sodium dodecyl sulfate (SDS), and the vpsC mutant showed minor differences in its phospholipid profile compared to the wild type. vpsC mutants were unable to form plaques in cultured epithelial cells, but this was not due to a failure to invade, to replicate intracellularly, or to polymerize actin via IcsA for movement within epithelial cells.
View Article and Find Full Text PDFHere we implement ultraviolet photodissociation (UVPD) in an online liquid chromatographic tandem mass spectrometry (MS/MS) strategy to support analysis of complex mixtures of lipid A combinatorially modified during development of vaccine adjuvants. UVPD mass spectrometry at 193 nm was utilized to characterize the structures and fragment ion types of lipid A from Escherichia coli, Vibrio cholerae, and Pseudomonas aeruginosa using an Orbitrap mass spectrometer. The fragment ions generated by UVPD were compared to those from collision induced dissociation (CID) and higher energy collision dissociation (HCD) with respect to the precursor charge state.
View Article and Find Full Text PDFGram-negative bacteria decorate their outermost surface structure, lipopolysaccharide, with elaborate chemical moieties, which effectively disguises them from immune surveillance and protects them from the onslaught of host defences. Many of these changes occur on the lipid A moiety of lipopolysaccharide, a component that is crucial for host recognition of Gram-negative infection. In this Review, we describe the regulatory mechanisms controlling lipid A modification and discuss the impact of modifications on pathogenesis, bacterial physiology and bacterial interactions with the host immune system.
View Article and Find Full Text PDFGram-negative bacteria have an outer membrane containing LPS. LPS is constituted of an oligosaccharide portion and a lipid-A moiety that embeds this molecule within the outer membrane. LPS is a pathogen-associated molecular pattern, and several pathogens modify their lipid-A as a stealth strategy to avoid recognition by the innate immune system and gain resistance to host factors that disrupt the bacterial cell envelope.
View Article and Find Full Text PDFThe isolation and characterization of the lipid A domain of lipopolysaccharide (LPS) are important methodologies utilized to gain understanding of the Gram-negative cell envelope. Here, we describe protocols often employed by our laboratory for small- and large-scale isolation of lipid A from bacterial cells. Additionally, we describe various methodologies including isolation of radiolabeled lipid A, thin layer chromatography, and various mass spectrometry methods.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2013
Despite its highly inflammatory nature, LPS is a molecule with remarkable therapeutic potential. Lipid A is a glycolipid that serves as the hydrophobic anchor of LPS and constitutes a potent ligand of the Toll-like receptor (TLR)4/myeloid differentiation factor 2 receptor of the innate immune system. A less toxic mixture of monophosphorylated lipid A species (MPL) recently became the first new Food and Drug Administration-approved adjuvant in over 70 y.
View Article and Find Full Text PDFThe adaptation of Pseudomonas aeruginosa to its environment, including the host, is tightly controlled by its network of regulatory systems. The two-component regulatory system PhoPQ has been shown to play a role in the virulence and polymyxin resistance of P. aeruginosa as well as several other Gram-negative species.
View Article and Find Full Text PDF