Melanoma-associated leptomeningeal disease (M-LMD) occurs when circulating tumor cells (CTCs) enter into the cerebral spinal fluid (CSF) and colonize the meninges, the membrane layers that protect the brain and the spinal cord. Once established, the prognosis for M-LMD patients is dismal, with overall survival ranging from weeks to months. This is primarily due to a paucity in our understanding of the disease and, as a consequence, the availability of effective treatment options.
View Article and Find Full Text PDFLeptomeningeal disease (LMD) occurs when tumors seed into the leptomeningeal space and cerebrospinal fluid (CSF), leading to severe neurological deterioration and poor survival outcomes. We utilized comprehensive multi-omics analyses of CSF from patients with lymphoma LMD to demonstrate an immunosuppressive cellular microenvironment and identified dysregulations in proteins and lipids indicating neurodegenerative processes. Strikingly, we found a significant accumulation of toxic branched-chain keto acids (BCKA) in the CSF of patients with LMD.
View Article and Find Full Text PDFBackground: Leptomeningeal disease (LMD) occurs as a late complication of several human cancers and has no rationally designed treatment options. A major barrier to developing effective therapies for LMD is the lack of cell-based or preclinical models that recapitulate human disease. Here, we describe the development of in vitro and in vivo cultures of patient-derived cerebrospinal fluid circulating tumor cells (PD-CSF-CTCs) from patients with melanoma as a preclinical model to identify exploitable vulnerabilities in melanoma LMD.
View Article and Find Full Text PDFThe use of immune checkpoint inhibitors including ipilimumab and nivolumab has expanded for several tumors including melanoma brain metastasis. These have resulted in a growing spectrum of neurologic immune-related adverse events, including ones that are rare and difficult to diagnose and treat. Here, we present a patient with melanoma brain metastasis who was treated with immune checkpoint inhibitors and developed an Acute Motor Axonal Neuropathy.
View Article and Find Full Text PDFPurpose: Melanoma brain metastases (MBM) and leptomeningeal melanoma metastases (LMM) are two different manifestations of melanoma CNS metastasis. Here, we used single-cell RNA sequencing (scRNA-seq) to define the immune landscape of MBM, LMM, and melanoma skin metastases.
Experimental Design: scRNA-seq was undertaken on 43 patient specimens, including 8 skin metastases, 14 MBM, and 19 serial LMM specimens.
Background: Radiotherapy may synergize with programmed cell death 1 (PD1)/PD1 ligand (PD-L1) blockade. The purpose of this study was to determine the recommended phase II dose, safety/tolerability, and preliminary efficacy of combining pembrolizumab, an anti-PD1 monoclonal antibody, with hypofractionated stereotactic irradiation (HFSRT) and bevacizumab in patients with recurrent high-grade gliomas (HGGs).
Methods: Eligible subjects with recurrent glioblastoma or anaplastic astrocytoma were treated with pembrolizumab (100 or 200 mg based on dose level Q3W) concurrently with HFSRT (30 Gy in 5 fractions) and bevacizumab 10 mg/kg Q2W.
Purpose: The development of leptomeningeal melanoma metastases (LMM) is a rare and devastating complication of the late-stage disease, for which no effective treatments exist. Here, we performed a multi-omics analysis of the cerebrospinal fluid (CSF) from patients with LMM to determine how the leptomeningeal microenvironment shapes the biology and therapeutic responses of melanoma cells.
Experimental Design: A total of 45 serial CSF samples were collected from 16 patients, 8 of these with confirmed LMM.
In February 2018, the Melanoma Research Foundation and the Moffitt Cancer Center hosted the Second Summit on Melanoma Central Nervous System Metastases in Tampa, Florida. The meeting included investigators from multiple academic centers and disciplines. A consensus summary of the progress and challenges in melanoma parenchymal brain metastases was published (Eroglu et al.
View Article and Find Full Text PDFIntroduction: A patient who was initially considered to have a glioblastoma (GBM) had molecular analysis, showing that it was a pleomorphic xanthoastrocytoma (PXA). Up to 78% of PXA tumors have BRAF V600E mutations. Primary brain tumors with BRAF mutations can have a good response to BRAF MEK inhibitors (BRAF MEKi), and there may be a synergistic response when combined with autophagy inhibitors.
View Article and Find Full Text PDFPurpose: Leptomeningeal disease is a rare presentation of advanced metastatic breast cancer. The purpose of this study was to evaluate craniospinal progression between intrathecal (IT) trastuzumab, IT chemotherapy, and whole brain radiation therapy (WBRT) in leptomeningeal disease.
Methods: A total of 56 patients were identified with breast cancer leptomeningeal disease at our institution treated with IT trastuzumab (n = 18; 32%), single-agent IT chemotherapy (methotrexate n = 14 or thiotepa n = 1; 27%), or WBRT alone (n = 23; 41%).
Uveal melanoma is a rare subtype of melanoma, accounting for only 3-5% of all melanoma cases in the USA. Although fewer than 4% of uveal melanoma patients present with metastasis at diagnosis, approximately half will develop metastasis, more than 90% of which disseminate to the liver. Infrequently, a number of malignancies can lead to leptomeningeal metastases, a devastating and terminal complication.
View Article and Find Full Text PDF