Publications by authors named "Brittany C Parker Kerrigan"

Cerebrospinal fluid (CSF) analysis is underutilized in patients with glioblastoma (GBM), partly due to a lack of studies demonstrating the clinical utility of CSF biomarkers. While some studies show the utility of CSF cell-free DNA analysis, studies analyzing CSF metabolites in patients with glioblastoma are limited. Diffuse gliomas have altered cellular metabolism.

View Article and Find Full Text PDF

The FGFR3-TACC3 (F3-T3) fusion gene was discovered as an oncogenic molecule in glioblastoma and bladder cancers, and has subsequently been found in many cancer types. Notably, F3-T3 was found to be highly expressed in both untreated and matched recurrence glioblastoma under the concurrent radiotherapy and temozolomide (TMZ) treatment, suggesting that targeting F3-T3 is a valid strategy for treatment. Here, we show that the F3-T3 protein is a client of heat shock protein 90 (HSP90), forming a ternary complex with the cell division cycle 37 (CDC37).

View Article and Find Full Text PDF

A major rate-limiting step in developing more effective immunotherapies for GBM is our inadequate understanding of the cellular complexity and the molecular heterogeneity of immune infiltrates in gliomas. Here, we report an integrated analysis of 201,986 human glioma, immune, and other stromal cells at the single cell level. In doing so, we discover extensive spatial and molecular heterogeneity in immune infiltrates.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the use of bone marrow-derived human mesenchymal stem cells (BM-hMSCs) from glioma patients who have undergone marrow-toxic chemotherapy as carriers for an oncolytic virus called Delta-24-RGD, which targets and kills glioma cells.
  • Five patients with recurrent malignant glioma were enrolled, and their BM-hMSCs were cultured and shown to have similar properties to those from healthy donors, including the ability to differentiate into different cell types.
  • The findings indicate that the patient-derived BM-hMSCs effectively delivered Delta-24-RGD in preclinical models, significantly improving survival rates in mice with gliomas, suggesting potential for clinical application.
View Article and Find Full Text PDF
Article Synopsis
  • Oncolytic adenoviruses show promise for treating solid tumors like glioblastoma (GBM), but existing animal models are limited due to species selectivity, necessitating a new approach.
  • Researchers developed an intracranial glioma model using Syrian hamsters that allows for viral replication and immune response assessment, addressing gaps in current models.
  • Findings revealed that the virus Delta-24-RGD effectively kills tumor cells, increases T-cell infiltration in tumors, and significantly improves survival in treated hamsters compared to controls, suggesting the model's potential for future clinical applications.
View Article and Find Full Text PDF

Background: Fusion genes form as a result of abnormal chromosomal rearrangements linking previously separate genes into one transcript. The FGFR3-TACC3 fusion gene (F3-T3) has been shown to drive gliomagenesis in glioblastoma (GBM), a cancer that is notoriously resistant to therapy. However, successful targeting of F3-T3 via small molecular inhibitors has not revealed robust therapeutic responses, and specific targeting of F3-T3 has not been achieved heretofore.

View Article and Find Full Text PDF

Background: Delta-24-RGD, an oncolytic adenovirus, shows promise against glioblastoma. To enhance virus delivery, we recently demonstrated that human bone marrow-derived mesenchymal stem cells loaded with Delta-24-RGD (hMSC-D24) can eradicate glioblastomas in mouse models. There are no studies examining the safety of endovascular selective intra-arterial (ESIA) infusions of MSC-D24 in large animals simulating human clinical situations.

View Article and Find Full Text PDF

Dynamic interplay between cancer cells and the surrounding microenvironment is a feature of the metastatic process. Successful metastatic brain colonization requires complex mechanisms that ultimately allow tumor cells to adapt to the unique microenvironment of the central nervous system, evade immune destruction, survive, and grow. Accumulating evidence suggests that components of the brain tumor microenvironment (TME) play a vital role in the metastatic cascade.

View Article and Find Full Text PDF

Objective: Bone marrow-derived human mesenchymal stem cells (BM-hMSCs) have been used in clinical trials for the treatment of several neurological disorders. MSCs have been explored as a delivery modality for targeted viral therapeutic agents in the treatment of intracranial pathologies. Delta-24-RGD, a tumor-selective oncolytic adenovirus designed to target malignant glioma cells, has been shown to be effective in animal models and in a recent clinical trial.

View Article and Find Full Text PDF

Stem cells (SC) are the seeds of tissue repair and regeneration that have been extensively investigated as tumor-tropic vectors for gene delivery to solid cancers. SC have an inherent glioma tropism that supports their use as reliable vehicles to deliver therapeutic gene products to brain neoplasms. Several types of adult SC (ASC) have been used to carry antiglioma agents, and neural SC (NSC) and mesenchymal SC (MSC) are the most studied.

View Article and Find Full Text PDF

Despite continued research efforts, glioblastoma multiforme (GBM) remains the deadliest brain tumor. Immunotherapy offers a novel way to treat this disease, the genetic signature of which is not completely elucidated. Additionally, these tumors are known to induce immunosuppression in the surrounding tumor microenvironment via an array of mechanisms, making effective treatment all the more difficult.

View Article and Find Full Text PDF

OBJECTIVE Mesenchymal stem cells (MSCs) have been shown to localize to gliomas after intravascular delivery. Because these cells home to areas of tissue injury, the authors hypothesized that the administration of ionizing radiation (IR) to tumor would enhance the tropism of MSCs to gliomas. Additionally, they sought to identify which radiation-induced factors might attract MSCs.

View Article and Find Full Text PDF

Mesenchymal stromal cells (MSCs) are a type of adult stem cell that has been exploited for the treatment of a variety of diseases, including cancer. In particular, MSCs have been studied extensively for their ability to treat glioblastoma (GBM), the most common and deadly form of brain cancer in adults. MSCs are attractive therapeutics because they can be obtained relatively easily from patients, are capable of being expanded numerically in vitro, can be easily engineered and are inherently capable of homing to tumors, making them ideal vehicles for delivering biological antitumoral agents.

View Article and Find Full Text PDF

Background: Previously we showed therapeutic efficacy of unprotected miR-124 in preclinical murine models of glioblastoma, including in heterogeneous genetically engineered murine models by exploiting the immune system and thereby negating the need for direct tumor delivery. Although these data were promising, to implement clinical trials, we required a scalable formulation that afforded protection against circulatory RNases.

Methods: We devised lipid nanoparticles that encapsulate and protect the miRs from degradation and provide enhanced delivery into the immune cell compartment and tested in vivo antitumor effects.

View Article and Find Full Text PDF

Purpose: Retinal pigment epithelial (RPE) cell death is an important feature of the advanced forms of AMD. Complement alternative pathway (AP) activation is associated with RPE cell death in AMD. In this study, we developed a new model to initiate AP activation on RPE cells and investigated the cellular mechanisms modulating AP activation-mediated RPE cell death.

View Article and Find Full Text PDF

Ovarian carcinoma is the most lethal gynaecological malignancy. Better understanding of the molecular pathogenesis of this disease and effective targeted therapies are needed to improve patient outcomes. MicroRNAs play important roles in cancer progression and have the potential for use as either therapeutic agents or targets.

View Article and Find Full Text PDF

Epithelial-to-mesenchymal transition (EMT) and its reverse process, mesenchymal-to-epithelial transition (MET), play important roles in embryogenesis, stem cell biology, and cancer progression. EMT can be regulated by many signaling pathways and regulatory transcriptional networks. Furthermore, post-transcriptional regulatory networks regulate EMT; these networks include the long non-coding RNA (lncRNA) and microRNA (miRNA) families.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionokt4le0lf4id45rbjmdeflb7ra26leba): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once