Multiple studies have examined the effects of the Deepwater Horizon oil spill on coastal marsh shoreline erosion. Most studies have concluded that the spill increased shoreline erosion (linear retreat) in oiled marshes by ~ 100-200% for at least 2-3 years. However, two studies have called much of this prior research into question, due to potential study design flaws and confounding factors, primarily tropical cyclone influences and differential wave exposure between oiled (impact) and unoiled (reference) sites.
View Article and Find Full Text PDFThe 2010 Deepwater Horizon disaster remains one of the largest oil spills in history. This event caused significant damage to coastal ecosystems, the full extent of which has yet to be fully determined. Crude oil contains toxic heavy metals and substances such as polycyclic aromatic hydrocarbons that are detrimental to some microbial species and may be used as food and energy resources by others.
View Article and Find Full Text PDFEcosystem engineers that modify landforms can be valuable tools for restoring habitat, but their use has frequently resulted in unanticipated outcomes. Departures from expectations might arise because applications discount the possibility that geomorphic processes are influenced by heritable phenotypic variation. We conducted a field-scale common garden experiment to assess whether shoreline erosion reflects intraspecific variation in the landform engineer .
View Article and Find Full Text PDFStratigraphic accretion of dormant propagules in soil can result in natural archives useful for studying ecological and evolutionary responses to environmental change. Few attempts have been made, however, to use soil-stored seed banks as natural archives, in part because of concerns over nonrandom attrition and mixed stratification. Here, we examine the persistent seed bank of , a foundational brackish marsh sedge, to determine whether it can serve as a resource for reconstructing historical records of demographic and population genetic variation.
View Article and Find Full Text PDFThe Deepwater Horizon oil spill affected hundreds of kilometers of coastal wetland shorelines, including salt marshes with persistent heavy oiling that required intensive shoreline "cleanup" treatment. Oiled marsh treatment involves a delicate balance among: removing oil, speeding the degradation of remaining oil, protecting wildlife, fostering habitat recovery, and not causing further ecological damage with treatment. To examine the effectiveness and ecological effects of treatment during the emergency response, oiling characteristics and ecological parameters were compared over two years among heavily oiled test plots subject to: manual treatment, mechanical treatment, natural recovery (no treatment, oiled control), as well as adjacent reference conditions.
View Article and Find Full Text PDF