Publications by authors named "Brittain G"

Despite the use of 'high efficacy' disease-modifying therapies, disease activity and clinical progression of different immune-mediated neurological diseases continue for some patients, resulting in accumulating disability, deteriorating social and mental health, and high economic cost to patients and society. Although autologous hematopoietic stem cell transplant is an effective treatment modality, it is an intensive chemotherapy-based therapy with a range of short- and long-term side-effects. Chimeric antigen receptor T-cell therapy (CAR-T) has revolutionized the treatment of B-cell and other hematological malignancies, conferring long-term remission for otherwise refractory diseases.

View Article and Find Full Text PDF

Academic physicians are responsible for the education of medical students, residents, and other practicing physicians through clinical rotations lectures, seminars, research, and conferences. Therefore, the increasing need to recruit academic physicians holds immense value within the healthcare system. Academic Medicine Interest Group (AMIG) is a collective made up of students who share an interest in the growth and advancement of academic medicine.

View Article and Find Full Text PDF

Introduction: Autologous haematopoietic stem cell transplantation (aHSCT) is increasingly used as treatment for patients with active multiple sclerosis (MS), typically after failure of disease-modifying therapies (DMTs). A recent phase III trial, 'Multiple Sclerosis International Stem Cell Transplant, MIST', showed that aHSCT resulted in prolonged time to disability progression compared with DMTs in patients with relapsing remitting MS (RRMS). However, the MIST trial did not include many of the current high-efficacy DMTs (alemtuzumab, ocrelizumab, ofatumumab or cladribine) in use in the UK within the control arm, which are now offered to patients with rapidly evolving severe MS (RES-MS) who are treatment naïve.

View Article and Find Full Text PDF

Introduction: Falls that occur within a hospital setting are difficult to predict, however, are preventable adverse events with the potential to negatively impact patient care. Falls have the potential to cause serious or fatal injuries and may increase patient morbidity. Many hospitals utilize fall "predictor tools" to categorize a patient's fall risk, however, these tools are primarily studied within in-patient units.

View Article and Find Full Text PDF

Although the value of patient and public involvement and engagement (PPIE) activities in the development of new interventions and tools is well known, little guidance exists on how to perform these activities in a meaningful way. This is particularly true within large research consortia that target multiple objectives, include multiple patient groups, and work across many countries. Without clear guidance, there is a risk that PPIE may not capture patient opinions and needs correctly, thereby reducing the usefulness and effectiveness of new tools.

View Article and Find Full Text PDF

Introduction: Anki is an application that capitalizes upon the techniques of spaced repetition and is increasingly utilized by medical students for examination preparation. This study examines the impact of Anki usage in a medical school curriculum on academic performance. Secondary objectives analyzed individual Anki utilization and a qualitative assessment of Anki use.

View Article and Find Full Text PDF

Rising concerns of cerebral venous sinus thrombosis (CVST) and other forms of venous thromboembolism have been associated with the SARS-CoV-2 vaccinations. Adverse effects with vector-based vaccines are well documented in the literature, while less is known about the mRNA vaccines. This report documents a case of CVST in a 32-year-old female patient who received her second Pfizer mRNA COVID-19 vaccination 16 days prior to hospital admission and had started oral combined contraceptives approximately 4 months beforehand.

View Article and Find Full Text PDF

Background: Measuring mobility in daily life entails dealing with confounding factors arising from multiple sources, including pathological characteristics, patient specific walking strategies, environment/context, and purpose of the task. The primary aim of this study is to propose and validate a protocol for simulating real-world gait accounting for all these factors within a single set of observations, while ensuring minimisation of participant burden and safety.

Methods: The protocol included eight motor tasks at varying speed, incline/steps, surface, path shape, cognitive demand, and included postures that may abruptly alter the participants' strategy of walking.

View Article and Find Full Text PDF

Background: The development of optimal strategies to treat impaired mobility related to ageing and chronic disease requires better ways to detect and measure it. Digital health technology, including body worn sensors, has the potential to directly and accurately capture real-world mobility. Mobilise-D consists of 34 partners from 13 countries who are working together to jointly develop and implement a digital mobility assessment solution to demonstrate that real-world digital mobility outcomes have the potential to provide a better, safer, and quicker way to assess, monitor, and predict the efficacy of new interventions on impaired mobility.

View Article and Find Full Text PDF

In carefully selected patients, autologous haematopoietic stem cell transplantation (HSCT) is a safe, highly effective and cost-saving treatment modality for treatment-resistant, and potentially treatment-naïve, immune-mediated neurological disorders. Although the evidence base has been growing in the last decade, limited understanding has led to confusion, mistrust and increasing use of health tourism. In this article, we discuss what autologous HSCT is, which immune-mediated conditions can be treated with it, how to select patients, what are the expected outcomes and potential adverse effects, and how cost-effective this treatment is.

View Article and Find Full Text PDF

Strawberry production in California represents over 38,000 acres with an annual farm value of $1.99 billion. Strawberry dieback was observed in February of 2021 in the Salinas Valley in central California.

View Article and Find Full Text PDF

Ultraviolet B radiation (UVB) has profound effects on human skin that results in a broad spectrum of immunological local and systemic responses and is the major cause of skin carcinogenesis. One important area of study in photobiology is how UVB is translated into effector signals. As the skin is exposed to UVB light, subcellular microvesicle particles (MVP), a subtype of bioactive extracellular vesicles, are released causing a variety of local and systemic immunological effects.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a central nervous system (CNS) disorder, which is mediated by an abnormal immune response coordinated by T and B cells resulting in areas of inflammation, demyelination, and axonal loss. Disease-modifying treatments (DMTs) are available to dampen the inflammatory aggression but are ineffective in many patients. Autologous hematopoietic stem cell transplantation (HSCT) has been used as treatment in patients with a highly active disease, achieving a long-term clinical remission in most.

View Article and Find Full Text PDF

Physical mobility is essential to health, and patients often rate it as a high-priority clinical outcome. Digital mobility outcomes (DMOs), such as real-world gait speed or step count, show promise as clinical measures in many medical conditions. However, current research is nascent and fragmented by discipline.

View Article and Find Full Text PDF

Introduction: Advances in wearable sensor technology now enable frequent, objective monitoring of real-world walking. Walking-related digital mobility outcomes (DMOs), such as real-world walking speed, have the potential to be more sensitive to mobility changes than traditional clinical assessments. However, it is not yet clear which DMOs are most suitable for formal validation.

View Article and Find Full Text PDF

The CytoFLEX is a novel semiconductor-based flow cytometer that utilizes avalanche photodiodes, wavelength-division multiplexing, enhanced optics, and diode lasers to maximize light capture and minimize optical and electronic noise. Due to an increasing interest in the use of extracellular vesicles (EVs) as disease biomarkers, and the growing desire to use flow cytometry for the analyses of biological nanoparticles, we assessed the light-scatter sensitivity of the CytoFLEX for small-particle detection. We found that the CytoFLEX can fully resolve 70 nm polystyrene and 98.

View Article and Find Full Text PDF

A biochemical system and method have been developed to enable the quantitative measurement of cytoplasmic versus nuclear localization within cells in whole blood. Compared with the analyses of nuclear localization by western blot or fluorescence microscopy, this system saves a lot of time and resources by eliminating the necessity of purification and culturing steps, and generates data that are free from the errors and artifacts associated with using tumor cell lines or calculating nuclear signals from 2D images. This user-friendly system enables the analysis of cell signaling within peripheral blood cells in their endogenous environment, including measuring the kinetics of nuclear translocation for transcription factors without requiring protein modifications.

View Article and Find Full Text PDF

We previously developed a Deterministic Lateral Displacement (DLD) microfluidic method in silicon to separate cells of various sizes from blood (Davis et al., Proc Natl Acad Sci 2006;103:14779-14784; Huang et al., Science 2004;304:987-990).

View Article and Find Full Text PDF

The tumor necrosis factor receptor-associated factors (TRAFs) have been classically described as adaptor proteins that function as solely cytosolic signaling intermediates for the TNF receptor superfamily, Toll-like receptors (TLRs), NOD, like receptors (NLRs), cytokine receptors, and others. In this study, we show for the first time that TRAFs are present within the cytoplasm and nucleus of Neuro2a cells and primary cortical neurons, and that TRAF2 and TRAF3 translocate into the nucleus within minutes of CD40L stimulation. Analysis of the transcriptional regulatory potential of TRAFs by luciferase assay revealed that each of the TRAFs differentially functions as a transcriptional activator or repressor in a cell-specific manner.

View Article and Find Full Text PDF

Development of autoimmune diseases, such as multiple sclerosis and experimental autoimmune encephalomyelitis (EAE), involves the inflammatory action of Th1 and Th17 cells, but the underlying signaling mechanism is incompletely understood. We show that the kinase TPL2 is a crucial mediator of EAE and is required for the pathological action of Th17 cells. TPL2 serves as a master kinase mediating the activation of multiple downstream pathways stimulated by the Th17 signature cytokine IL-17.

View Article and Find Full Text PDF

Background: Orbital sub-periosteal haematoma (OSH) is usually caused by orbital trauma. We present a case of spontaneous OSH and review the literature on this condition.

Methods: We present a case of sub-periosteal haematoma secondary to migraine and vigorous emesis.

View Article and Find Full Text PDF