Graphene nanoribbons are one-dimensional stripes of graphene with width- and edge-structure-dependent electronic properties. They can be synthesized bottom-up in solution to obtain precise ribbon geometries. Here we investigate the optical properties of solution-synthesized 9-armchair graphene nanoribbons (9-aGNRs) that are stabilized as dispersions in organic solvents and further fractionated by liquid cascade centrifugation (LCC).
View Article and Find Full Text PDFNatural materials are composed of a limited number of molecular building blocks and their exceptional properties are governed by their hierarchical structure. However, this level of precision is unattainable with current state-of-the-art materials for 3D printing. Herein, new self-assembled printable materials based on block copolymers (BCPs) enabling precise control of the nanostructure in 3D are presented.
View Article and Find Full Text PDF