Publications by authors named "Britta Wachter"

Trk (NTRK) receptor and NTRK gene fusions are oncogenic drivers of a wide variety of tumors. Although Trk receptors are typically activated at the cell surface, signaling of constitutive active Trk and diverse intracellular NTRK fusion oncogenes is barely investigated. Here, we show that a high intracellular abundance is sufficient for neurotrophin-independent, constitutive activation of TrkB kinase domains.

View Article and Find Full Text PDF

A GWAS study recently demonstrated single nucleotide polymorphisms (SNPs) in the human gene of individuals with a prevalence for agoraphobia. encodes the glycine receptor (GlyRs) β subunit. The identified SNPs are localized within the gene flanking regions (3' and 5' UTRs) and intronic regions.

View Article and Find Full Text PDF

The endoplasmic reticulum (ER) acts as a dynamic calcium store and is involved in the generation of specific patterns of calcium signals in neurons. Calcium is mobilized from the ER store by multiple signaling cascades, and neuronal activity is known to regulate ER calcium levels. We asked how neurons regulate ER calcium levels in the resting state.

View Article and Find Full Text PDF

The neurotoxin 6-hydroxydopamine (6-OHDA) is frequently used in animal models to mimic Parkinson's disease. Imaging studies describe hyperintense signalling in regions close to the site of the 6-OHDA injection in T2-weighted (T2w) magnetic resonance imaging (MRI). The nature of this hyperintense signal remains elusive and still is matter of discussion.

View Article and Find Full Text PDF

Reactive astrogliosis is the universal response to any brain insult. It is characterized by cellular hypertrophy, up-regulation of the astrocyte marker glial fibrillary acidic protein (GFAP), and proliferation. The source of these proliferating cells is under intense debate.

View Article and Find Full Text PDF

Proliferation of astrocytes plays an essential role during ontogeny and in the adult brain, where it occurs following trauma and in inflammation and neurodegenerative diseases as well as in normal, healthy mammals. The cellular mechanisms underlying glial proliferation remain poorly understood. As dopamine is known to modulate proliferation in different cell populations, we investigated the effects of dopamine on the proliferation of striatal astrocytes in vitro.

View Article and Find Full Text PDF