Films containing polyethylene oxide (PEO) and a model drug, either guaifenesin (GFN) or ketoprofen (KTP), were prepared by hot-melt extrusion. The thermal properties of the hot-melt extruded films were investigated using differential scanning calorimetry (DSC). Scanning electron microscopy (SEM) was used to examine the surface morphology of the films, and wide angle X-ray diffraction (XRD) was used to investigate the crystalline properties of the polymer, drugs and physical mixtures as well as the solid state structure of the films.
View Article and Find Full Text PDFThe objective of this research project was to determine the physicochemical properties and investigate the drug release mechanism from ethyl cellulose (EC) matrix tablets prepared by either direct compression or hot-melt extrusion (HME) of binary mixtures of water soluble drug (guaifenesin) and the polymer. Ethyl cellulose was separated into "fine" or "coarse" particle size fractions corresponding to 325-80 and 80-30 mesh particles, respectively. Tablets containing 30% guaifenesin were prepared at 10, 30, or 50 kN compaction forces and extruded at processing temperatures of 80-90 and 90-110 degrees C.
View Article and Find Full Text PDF